

Course Code	Course Title	ECTS Credits
MATH-190	Calculus I	8
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-180 or MPT
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1 st	Dr Marios A. Christou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- 1. Cover limits and continuity in depth
- 2. Discuss limits and continuity of trigonometric functions in detail.
- 3. Introduce students to derivatives and provide them with a deep knowledge of differentiation techniques.
- 4. Discuss the basic calculus theorems such as the Intermediate Value theorem, the Mean Value theorem and Rolle's theorem.
- 5. Provide students with the necessary knowledge to analyze functions and sketch their graphs.
- 6. Introduce the students to the integral as a summation and evaluate indefinite and definite integrals.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Compute limits, including one-sided limits, and limits at infinity.
- 2. Determine the intervals on which a function is continuous
- 3. Apply derivatives to find equations of tangent lines and rates of change.
- 4. Use the derivative analyze functions and sketch the graphs of polynomial and rational functions.
- 5. Implement Rolle's theorem and the mean value theorem.
- 6. Compute definite and indefinite integrals using their basic properties and techniques such as u-substitution.
- 7. Calculate the derivatives and integrals of Logarithmic and exponential Functions.

Course Contents:

- 1. Limits-Limits at infinity. Continuity.
- 2. Continuity of Trigonometric Functions. Tangent Lines, rates of change.
- 3. The Derivative Function. Techniques of Differentiation, Product and Quotient

rules.

- 4. Derivatives of Trigonometric Functions. The Chain Rule. Implicit Differentiation.
- 5. Analysis of Functions.
- 6. Rolle's Theorem; Mean Value Theorem. An Overview of the Area Problem
- 7. The Indefinite and Define Integral.
- 8. Exponential and Logarithmic Functions.
- 9. Derivatives and Integrals of Logarithmic and Exponential Functions.

Learning Activities and Teaching Methods:

Lectures, Handouts and Assignments

Assessment Methods:

2 Mid-Term Exams; Final Exam; Class Participation.	
--	--

Required Textbook/Reading:

Authors	Title	Publisher	Year	ISBN
Howard Anton, Irl	Calculus: Late	Wiley	2009	0470183497
Bivens, Stephen	Transcendentals			
Davis	, Combined			
	9th Edition			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
James Stewart	Calculus	Thomson/Brooks/	2007	9780495011668
		Cole		