

UNIVERSITY of NICOSIA

Course Code	Course Title	ECTS Credits
MATH-191	Calculus II	8
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-190
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	1^{st} or 2^{nd}	Dr Marios A. Christou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Cover indeterminate forms of limits and L'Hospital's rule.
- Introduce students to inverse trigonometric functions
- Provide students with a deep knowledge of integration techniques
- Introduce students to sequences and discuss monotonicity tests
- Cover all aspects of infinite series and convergence tests.
- Discuss Maclaurin and Taylor series
- Discuss power series and absolute convergence in detail
- Make students aware of the application of the definite integral in evaluating areas and volumes.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Evaluate limits using L'Hopital's Rule.
- 2. Calculate the derivatives and integrals of inverse trigonometric functions.
- 3. Apply various integration methods to compute definite and indefinite integrals
- 4. Evaluate improper integrals.
- 5. Use appropriate techniques and theorems to investigate the convergence and monotonicity of a sequence.
- 6. Apply convergence tests to determine whether a series converges or diverges.
- 7. Compute and use Maclaurin and Taylor Approximations.
- 8. Find the radius and interval of convergence of a power series
- 9. Calculate areas and volumes using integration.

Course Contents:

- 1. L'Hopital's Rule, Indeterminate forms.
- 2. Derivatives and Integrals involving Inverse Trigonometric Functions.
- 3. Integration:
 - a. Review of basic Integration Formulae

- b. Integration by parts
- c. Trigonometric Integrals and Reduction Formulas
- d. Trigonometric Substitution
- e. Partial Fractions
- f. Improper Integrals
- 4. Sequences
 - a. Convergence
 - b. Monotone sequences
- 5. Infinite series
 - a. Partial Sums
 - b. Geometric and Telescoping Series
 - c. Convergence Tests
 - d. Alternating Series
 - e. Absolute Convergence
 - f. Maclaurin and Taylor Series
 - g. Power Series
- 6. Applications of the Definite Integral
 - a. Area between two curves
 - b. Volumes by Slicing
 - c. Volumes using Cylindrical Shells

Learning Activities and Teaching Methods:

Lectures, Homework and Programming Assignments

Assessment Methods:

Two Mid-Term Exams, Final Exam, Quizzes, Class Participation.

Required Textbook/Reading:

Authors	Title	Publisher	Year	ISBN
Howard Anton, Irl	Calculus: Late	Wiley	2009	0470183497
Bivens, Stephen	Transcendentals,			
Davis	Combined			
	9th Edition			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
James Stewart	Calculus	Thomson/Brooks/	2007	9780495011668
		Cole		