

Course Syllabus

Course Code	Course Title	ECTS Credits	
MATH-280	Linear Algebra I	6	
Prerequisites	Department	Semester	
MATH-190	Computer Science	Fall/Spring	
Type of Course	Field	Language of Instruction	
Required	Mathematics	English/Greek	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr. George Chailos	2 nd	
Mode of Delivery	Work Placement	Corequisites	
Face to Face	NA	None	

Course Objectives:

The main objectives of the course are to:

- Teach the basic theory of Linear systems of equations.
- Introduce the student to the basic theory of Matrices, their applications in the Linear Systems theory and the notions of eigenvalues and eigenvectors.
- Introduce the concepts of vectors in **R**ⁿ.
- Study the basic theory of Linear transformations and their applications.
- Offer the basic concepts and the elementary theory of finite dimensional vector spaces and their applications on matrix and linear systems theory.

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Solve linear systems using the general theory of linear systems as well as the matrix theory.
- 2. Understand the basic concepts of *n*-vectors and their representation on \mathbf{R}^2 , \mathbf{R}^3 .
- 3. Comprehend the basic theory of Linear transformations and their applications on systems theory.
- 4. Handle abstract vector spaces and prove basic theorems related to the notions of linear independence, span, basis, and dimension of the vector space.
- 5. Comprehend the theory of matrices and be able to calculate the eigenvalues and eigenvectors of square matrices.

Course Content:

- 1. Linear systems and Matrices
 - General theory of Linear systems.
 - Theory and properties of Matrices, Invertibility of Matrices, Determinant of a Matrix.
- 2. Vectors and Linear Transformations
 - Vectors in the plane and n-vectors.
 - Introduction to the theory of linear Transformations.
- 3. Vector Spaces
 - Vector spaces and subspaces.
 - The basis and the dimension of a vector space.
 - The Rank of a Matrix and its applications.
- 4. Further theory of square Matrices
 - Eigenvalues and Eigenvectors of square matrices.
 - Diagonalization of Matrices.

Learning Activities and Teaching Methods:

Lectures, Exercises, Assignments and Tests.

Assessment Methods:

Midterm Examination, Final Examination, Homework Assignments

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Elementary Linear Algebra	B. Kolman and D. Hill	Pearson 9 th Ed.	2017	9780134718538

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Linear Algebra and its Applications	S. Lay and J. McDonald	Pearson 5th Ed.	2015	9780321982384