

Course Code	Course Title	ECTS Credits
MATH-270	Calculus III	8
Department	Semester	Prerequisites
Computer Science	Fall, Spring	MATH-191
Type of Course	Field	Language of Instruction
Required	Mathematics	English
Level of Course	Year of Study	Lecturer(s)
1 st Cycle	2^{nd} or 3^{rd}	Dr Nectarios Papanicolaou
Mode of Delivery	Work Placement	Co-requisites
Face-to-face	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- Introduce students to coordinate systems, lines and planes in three dimensions.
- Thoroughly discuss all necessary concepts for performing all basic vector algebra operations.
- Introduce students to curves and surfaces in 3-D
- Familiarize students with functions of two and three variables.
- Provide students with deep knowledge of the theory and techniques of partial differentiation.
- Introduce students to double and triple integration
- Define vector fields and vector differential operators.
- Cover the fundamental concepts that will enable students to work with basic identities.
- Discuss the applications of vector fields in gravitation and electromagnetics

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Carry out vector operations(addition, scalar multiplication, cross product)
- 2. Employ vectors to describe lines and planes in 3-D.
- 3. Use vectors to analyze curves in 3-D. Compute their arc-length
- 4. Calculate partial derivatives using techniques such as the chain, product and quotient rules
- 5. Use partial derivatives to find relative and absolute extrema of functions of two variables.
- 6. Evaluate multiple integrals
- 7. Apply vector differential operators to vector fields.
- 8. Prove identities involving vector differential operators.
- 9. Evaluate line integrals

Course Contents:

- 1. 3-D space and coordinate systems (lines, planes, spheres)
- 2. Vector Algebra (basic operations, dot and cross products, projections)
- 3. Curves in 3-D (parametrization and arc-length)
- 4. Limits and Continuity of multivariable functions
- 5. Partial Derivatives and Differentiability of functions of two and three variables. Implicit differentiation and the Chain rule.
- 6. Absolute and relative extrema of functions of two variables
- 7. Double and Triple Integrals
- 8. Vector Fields and Vector Differential Operators (gradient, divergence, Laplacian and curl)
- 9. Surface and line integrals
- 10. The theorems of Green, Gauss and Stokes

Learning Activities and Teaching Methods:

Lectures, Handouts and Assignments

Assessment Methods:

2 Mid-Term Exams; Final Exam; Class Participation.

Required Textbook/Reading:

Authors	Title	Publisher	Year	ISBN
Howard Anton, Irl	Calculus: Late	Wiley	2009	0470183497
Bivens, Stephen Davis	Transcendentals,			
	Combined			
	9th Edition			
	-or-			
Howard Anton, Irl	Calculus:	Wiley	2009	0470183462
Bivens, Stephen Davis	Multivariable			
	9th Edition			

Recommended Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
Colley	Vector Calculus	Pearson-	2006	0131858742
		Prentice Hall		