

MA2032 Calculus and Analysis 3

Academic Year:	2019/0	Student Workload (hours)
Module Level:	Year 2	Lectures
Scheme:	UG	Seminars
Department:	Mathematics	Practical Classes & Workshops
Credits:	20	Tutorials
		Fieldwork
		Project Supervision
		Guided Independent Study
		Demonstration
		Supervised time in studio/workshop
		Work Based Learning
		Placement
		Year Abroad
		Total Module Hours
Period:	Semester 1	
Occurence:	E	
Coordinator:	_ Sergei Petrovskiv	
Mark Sahama	LIC Modulo Mark Sohomo	
wark Scheme:		

No.	Assessment Description	Weight %	Qual Mark	Exam Hours	Ass't Group	Alt Reass't
001	Examination (Final)	70		2		
002	Coursework	30				
101	Examination (Final)	100		2		Y

Intended Learning Outcomes

- Differentiate and integrate vector valued functions, use Cartesian, polar and spherical coordinates with the corresponding Jacobians to calculate the change of variables.

- Compute line, path, surface and volume integrals of scalar and vector functions in two and three dimensions, apply Stokes, Green and Divergence theorems

- Use Taylor series for multivariable functions and perform estimates based on Taylor series, make calculations with basic Fourier series and use Parseval's theorem.

Teaching and Learning Methods

Lectures, feedback classes, computer-aided learning, problem sheets sheets.

Assessment Methods

Examination, coursework

Pre-Requisites

-

Co-Requisites

Excluded Combinations

Guided Independent Study: Indicative Activities

Directed reading, reviewing of lecture recordings, solving coursework problems, exam revision.