City University of Hong Kong Course Syllabus

offered by Department of Biomedical Sciences with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Diversity of Life and Evolution
Course Code:	BMS2202
Course Duration:	1 semester
Credit Units:	3 credits
Level:	B2
	Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	CHEM1200/BCH1200 Discovery in Biology (for normative 4-year students) or A Level Biology (for advance standing I students)
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	BCH2067 Diversity of Life and Evolution
Exclusive Courses : (Course Code and Title)	Nil

Part II Course Details

1. Abstract

(A 150-word description about the course)

In this course, students will:

- develop an understanding of the principles and importance of classification,
- develop an appreciation of Darwin's theory of evolution,
- examine the diversity of life in the Kingdoms Plantae and Animalia,
- explore the evolutionary relationships among various plant and animal groups as well as co-evolution of flowers and their pollinators,
- apply the knowledge of biological diversity to our daily life and culture.

This course will provide the basic knowledge on evolution and biodiversity of life, and prepare for elective courses e.g. Marine Biology, Animal Physiology, Plant Physiology.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs [#]	Weighting* (if applicable)		ery-enri lum rela g outcoi	ated
				tick	
			A1	A2	A3
1.	Describe the general principles of classification and binomial nomenclature for species naming.			\checkmark	
2.	Explain Darwin's evidence on evolution and hypothesis of natural selection that produced the diversity of life on earth.			√	
3.	Compare the diversity and characteristics of major groups of plants and animals including identification of local animal/plant species.		~	√	
4.	Apply the concepts of systematic zoology/botany to comprehend the evolutionary relationships among various plant and animal groups, and the co-evolution of flowers and their pollinators.		~	√	~
5.	Discover the connection between our daily life, culture and biological diversity.				~
* If 141	eighting is assigned to CILOs, they should add up to 100%	100%			

* If weighting is assigned to CILOs, they should add up to 100%. 100%

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description			No.		Hours/week	
	-	1	2	3	4	5	(if applicable)
Lectures and	Teaching and learning will be based on a	\checkmark					
tutorial exercises	combination of lectures and tutorial						
	exercises to explain the principles on						
	classification and species naming.						
Small group	Students will learn in small group		\checkmark				
activities	activities, by examining Darwin's						
	evidences on evolution and his hypothesis						
	that natural selection produced the						
	diversity of life on earth.						
Lectures and	Through lectures and group presentations			\checkmark			
group	students will learn to identify, describe						
presentations	and report basic morphological						
	characteristics of major groups of plants						
	(non-vascular plants to seed plants) and						
	animals (invertebrates and vertebrates).						
Small group	Concepts of adaptive radiation and				\checkmark		
discussions, small	convergent evolution in animals/plants as						
projects and/or	well as co-evolution of flowers and their						
literature study	pollinators will be examined through small						
	group discussions, small projects and/or						
	literature study.						
Small group	Through small group activities and a					\checkmark	
activities and	group project report, students will						
group project	discover the connection between						
report	biological diversity on food plates to our						
	daily life and culture.						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

ssessment Tasks/Activities CI		LON	lo.			Weighting*	Remarks
	1	2	3	4	5		
Continuous Assessment: <u>40</u> %							
Quizzes	\checkmark					5%	
Oral presentation / report		\checkmark	\checkmark		\checkmark	20%	
Class and online discussion / assignment		\checkmark		\checkmark		15%	
Examination: <u>60</u> % (duration: 3 hours)							
* The weightings should add up to 100%.						100%	

"Minimum Passing Requirement" for this course:

A minimum of 40% in both coursework and examination components.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Quizzes	Ability to explain biological concepts and their connection	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Oral presentation / report	Capacity for self-directed learning to comprehend and explain in detail with accuracy the concepts of diversity and evolution	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Class and online discussion / assignment	Ability to apply the knowledge of diversity and evolution in daily life	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	Ability to explain and apply the concepts and principles of diversity and evolution	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Principles of classification and binomial nomenclature

The three-domain and six-kingdom classification system, taxonomic hierarchy and binomial nomenclature.

Darwin's theory of evolution

Natural selection as the mechanism of evolution. Adaptive radiations of animals and plants.

Plant diversity and evolution

What is a plant? Green algae are the ancestors of land plants. Examine the diversity of life in the Kingdom Plantae, identify and describe basic morphological characteristics and reproductive strategies of various groups of non-vascular and vascular plants, identify common trees in Hong Kong. Examine the evidence of convergent evolution in plants. Explore the co-evolution of flowering plants and their animal pollinators.

Animal diversity and evolution

What is an animal? Examine the diversity of life in the Kingdom Animalia; identify and describe basic morphological characteristics of various groups of animals (invertebrates and vertebrates) and relate them to adaptations to the environment they are inhabiting (using local examples); examine adaptive radiations of animals and evolutionary relationships among various animal groups.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Raven P.H., Johnson G.B., Losos J.B. and Singer S.R. (2005) Biology. 7th edition. McGraw
	Hill, New York.
2.	Campbell N.A. and Reece J.B. (2005) Biology. 7th edition. Pearson, Benjamin Cummings, San
	Francisco.
3.	Raven P.H., Evert R.F. and Eichhorn S.E. (2005) Biology of Plants. 7th edition. Freeman, New
	York.
4.	Online Resources: To be provided, as required, in lectures and tutorials.