Syllabus

Course Identifier	MATH 201			
Course Title	Calculus III	for Science and Engineering (4 credits)		
Academic Year	2019 - 2020	(Fall semester)		
Instructor	Kostas Karagiannis			
	Office: Number 023 – Niarchos Technology Center (Lower Level Bissell Library)			
	Office hours: Please refer to the Instructor's schedule at the end of this document			
	Email: k.karag@act.edu			
Course delivery	Lecture	42 hours		
Prerequisites	Successful Co College Leve	ompletion of Math 121 - Calculus II for Science and Engineering, or l Calculus II course, or Placement Test.		

Assessment

Assessment Type	Assessment Length/Details	Proportion	
In Class Quizzes	In class 10-minute quizzes. 4 – 6 quizzes during the semester.	15 %	
Take-Home Assignments	Approximately the end of each chapter an extended problem set – Skill and Application problems	15 %	
In Class Exam 01	Approximately during the 5th teaching week of classes	20 %	
In Class Exam 02	Approximately during the 9th teaching week of classes	20 %	
In Class Final Exam	During the Final Exams week (3 hours)	30 %	

Examinations dates will be listed in the Tentative Course Schedule (passed out at the beginning of the semester). Their actual dates will be announced in class and/or Moodle at least two periods before they take place

Brief description

The purpose of this course is to give a solid foundation in Calculus concepts, tools and techniques for the student entering Science and Engineering fields. This course is a continuation to Calculus II for Science and Engineering

This course will address:

- Vectors, the dot and cross products, lines, planes, and surfaces.
- Vector-valued functions, their derivatives and integrals, the length and curvature of space curves, and velocity and acceleration along space curves, culminating in Kepler's laws.
- Functions of two or more variables are studied from verbal, numerical, visual, and algebraic points of view.
- Contour maps and the Midpoint Rule are used to estimate the average snowfall and average temperature in given regions. Double and triple integrals are used to compute probabilities, surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of three cylinders. Cylindrical and spherical coordinates are introduced in the context of evaluating triple integrals.
- Vector fields. The similarities among the Fundamental Theorem for line integrals, Green's Theorem, Stokes' Theorem, and the Divergence Theorem are emphasized.

The course emphasizes on skill, conceptualization and some modelling. All three are of great importance. Visualization and analysis via the use of technology is used in lecture and could be addressed in Take-Home Assignments.

Content

Topics Covered in Course (Chapter – Topic)			
12 - Vectors and Geometry of Space			
13 - Vector Functions			
14 - Partial Derivatives			
15 - Multiple Integrals			
16 - Vector Calculus			
13 - Vector Functions 14 - Partial Derivatives 15 - Multiple Integrals 16 - Vector Calculus			

Required Textbook(s):

Stewart, James. Calculus: Early Transcendentals, International Metric Edition, 8th Edition. Cengage Learning EMEA, 20150825. VitalBook file.

This eBook is available, upon registration for the course, through a link in our course Moodle site.

Optional Reference Textbook

• Worldwide Multivariable Calculus David B. Massey Northeastern University. – ISBN-10: 0-9842071-3-9 ISBN-13: 978-0-9842071-3-8 PDF and printed versions available at: http://www.centerofmath.org/textbooks/multicalc/index.html

Calculator: A scientific graphing calculator, without CAS capabilities. (Like: Texas Instruments TI-83).

In-Class Handouts: Provided by the instructor

Policies:

Policy 1: There are no make-ups for quizzes & exams.

Policy 2: There is a maximum of <u>10</u> hours of absences.

Policy 3: It is each student's responsibility to meet the College's standards of academic Integrity by avoiding involvement in cheating or plagiarism. According to the policy "A student committing an act of Academic Dishonesty in a given course will receive an F (0 percentage points) in the assignment where the academic infraction took place. If a student commits an act of Academic Dishonesty for a second time in the same course, this student will receive a failing grade in that course (see details later on in syllabus)/

Policy 4: No late assignments will be accepted. There are no make-up quizzes. An **exam can be rescheduled only if there is documented medical emergency, funeral or previous arrangements have been made with the instructor**. Weather cancellations of classes are announced in the local mass media. The instructor reserves the right to reschedule a class, schedule an additional class or review session by announcing that in a class session. I can be reached via email (my address is stated at the top of the syllabus).

Additional Resources

• Course Website in Moodle(MDL): Assignments, online tests and grades will be posted in this website. You are responsible for what is posted in this website and thus you should login and check it on a regular basis.

Moodle Login Instruction: From on campus, as well as off campus, you can access Moodle using the URL: moodle.act.edu. Use the same username and password you use to login to the ACT network.

• MathCAD or MATLAB mathematics software: Available at the ACT computer labs (do not purchase)

Grading

The following is the breakdown of the letter grade percentages

Grade Description	% points	US Letter Grade	US point grade
Excellent	95-100	А	4.0
Very Good (high)	90-94	A-	3.67
Very Good (low)	85-89	B+	3.33
Good (high)	80-84	В	3.0
Good (low)	75-79	B-	2.67
Satisfactory (high)	70-74	C+	2.33
Satisfactory (low)	65-69	С	2.0
Fail	0-64	F	0

<u>Grade Descriptors</u>: These descriptors outline the typical characteristics of the standard work associated with each grade.

Excellent: Superior performance; a high level of critical analysis and evaluation; incisive and original; exceptionally well researched; high quality presentation; exceptional clarity of ideas; excellent coherence and logic; trivial or very minor errors.

Very Good: Very good performance; a very good level of critical analysis and evaluation; significant originality; well researched; clarity of ideas, thoughtful and effective presentation; very coherent and logical; minor errors only.

Good: A good performance; a good level of critical analysis and evaluation; some evidence of originality; reasonably well researched; ideas generally clear and coherent; some but not significant weakness.

Satisfactory: Satisfactory performance—at least passable; acceptable level of critical analysis and evaluation; little evidence of originality; adequately researched; ideas fairly clear and coherent, though some significant weakness.

Fail: Clearly below the pass standard; lacking substance, knowledge and understanding; ideas confused and incoherent; fundamental weaknesses in most areas; fails to meet the Learning Outcomes.

Absence Policy

Students are expected to attend and participate in all of their courses throughout the term, including the first week. Those who fail to do so may be administratively withdrawn from individual courses of the College. This may affect the students' scholarship and financial aid eligibility.

A student is considered to have successfully attended a course if s/he has attended 75% of the course lectures. Thus, for a typical ACT course with 42 hours of contact time, the maximum number of absences stands at 10 hours per course. This policy applies to all ACT students, degree-seeking and Study Abroad. Please note that absences are counted on an hourly basis. Absences due to participation in school-related trips and activities may count toward this limit.

Class Format

- 1. Class Activities---200 in class minutes per week for the duration of the semester
 - a) Lecture of new material
 - b) Discovery method for presenting new material
 - c) Discussion of assigned reading and/or problems
 - d) Student presentation of problems
- 2. Individualized Study

a) Students are expected to read the textbook and work exercises over material covered in class and in the textbook.

b) The student will be expected to participate in each class period by asking questions and making comments on the material read and the exercises worked on.

3. Individual Student Conferences

a) Students can receive help from the instructor through scheduled office hours or by appointment.

Advice for Success

You are expected to:

- Attend all classes.
- Complete the reading assignments.
- Ask the instructor to aid you any problems with the material.
- Complete all homework assignments and keep them in a folder which you will bring with you in every class period.
- Complete all in class quizzes and examinations.
- Complete and turn in all class projects on the due date.
- Participate in class.

Last Updated: Fall 2019 by Kostas Karagiannis

Statement on Academic Integrity

"The College has the responsibility of maintaining the highest possible standards of academic integrity for the purpose of ensuring the quality of education it provides, underscoring its dedication to fostering a love of learning for its own sake, and of protecting those who rightly practice integrity in their academic affairs. It is the responsibility of the student to be informed about the college's policy on Academic Integrity, to refrain from infractions of that policy and from conduct, which may lead to suspicion of infractions, and to refrain from aiding or encouraging others in such infractions. It is the responsibility of the faculty to establish and maintain an environment which is conducive to Academic Integrity."

Academic Honesty

"Academic Dishonesty is the violation of Academic Integrity, committed by engaging in any form of unethical behavior which violates acceptable standards of scholarly conduct. Such practices as cheating on examinations, submitting borrowed or purchased papers and/or prepared bibliographies as one's own, plagiarizing, falsifying or copying lab reports, or aiding another person in any of the above infractions of Academic Integrity, constitute acts of Academic Dishonesty."

College-wide Policy on Academic Integrity

All academic divisions at ACT, both undergraduate and graduate, will apply the following policy on academic integrity:

"A student committing an act of Academic Dishonesty in a given course will receive an F (0 percentage points) in the assignment where the academic infraction took place. If a student commits an act of Academic Dishonesty for a second time in the same course, this student will receive a failing grade in that course".

The individual faculty is responsible for enforcing the policy in a conscientious manner, for reporting all cases to the Academic Standards & Performance Committee (AS&PC) for record-keeping and for informing the affected students of their right to appeal the faculty's decision to the AS&PC. Faculty must also insert the college's policy on Academic Integrity in their course syllabi."

Academic Standards & Performance Committee

A student may appeal an initial decision made by an individual faculty to a formal body called the Academic Standards & Performance Committee (an existing standing Committee), chaired by the Director of Academic & Student Affairs.

The AS&PC will meet as needed to evaluate appeals on alleged cases of academic dishonesty referred to the Committee by an involved party. Each case referred to the Committee will have a separate hearing (several hearings could conceivably take place during a single session of the Committee). Cases sent before the Committee deemed invalid will be dismissed. The AS&PC will keep records of all academic infraction cases, whether appealed or not and it will reserve the right to invite a student who has breached repetitively the school's policy to a hearing that may lead to sanctions ranging from failure of an assignment, to failure of a course, semester-long dismissal from the college, expulsion from the college.

Chapter 12	Vectors and Geometry of Space	791
12.1	Three-Dimensional Coordinate Systems	792
12.2	Vectors	798
12.3	The Dot Product	807
12.4	The Cross Product	814
12.5	Equations of Lines and Planes	823
12.6	Cylinders and Quadric Surfaces	834
Chapter 13	Vector Functions	847
13.1	Vector Functions and Space Curves	848
13.2	Derivatives and Integrals of Vector Functions	855
13.3	Arc Length and Curvature	861
13.4	Motion in Space: Velocity and Acceleration	870
Chapter 14	Partial Derivatives	887
14.1	Functions of Several Variables	888
14.2	Limits and Continuity	903
14.3	Partial Derivatives	911
14.4	Tangent Planes and Linear Approximations	927
14.5	The Chain Rule	937
14.6	Directional Derivatives and the Gradient Vector	946
14.7	Maximum and Minimum Values	959
14.8	Lagrange Multipliers	971
Chapter 15	Multiple Integrals	987
15.1	Double Integrals over Rectangles	988
15.2	Double Integrals over General Regions	1001
15.3	Double Integrals in Polar Coordinates	1010
15.4	Applications of Double Integrals	1016
15.5	Surface Area	1026
15.6	Triple Integrals	1029
15.7	Triple Integrals in Cylindrical Coordinates	1040
15.8	Triple Integrals in Spherical Coordinates	1045
15.9	Change of Variables in Multiple Integrals	1052
Chapter 16	Vector Calculus	1067
16.1	Vector Fields	1068
16.2	Line Integrals	1075
16.3	The Fundamental Theorem for Line Integrals	1087
16.4	Green's Theorem	1096
16.5	Curl and Divergence	1103
16.6	Parametric Surfaces and Their Areas	1111
16.7	Surface Integrals	1122
16.8	Stokes' Theorem	1134
16.9	The Divergence Theorem	1141

Notes:

Practice problems per section will be posted in Moodle and students are expected to solve <u>all</u> of the practice problems posted there. dd problems have solution at the end of the textbook.

The graded Take-Home Assignments may include some of the above problems and they will be made available to the students in printed form in class and electronically on Moodle.

Take-Home Assignments must be turned in handwritten form and on the handout provided by the instructor at the date assigned on Moodle.

Appendix C: Tentative Day-by-Day Lecture Schedule including assignments and assessments

	Monday		Friday		
					Priudy 27 Car
	23-Sep	24-Sep	25-Sep	26-Sep	27-Sep
Week 01	12.1		12.2	12.2	17 /
	12.1 2D Coord		12.2	I2.5	LZ.4
	3D COOTU	1 Oct	2 Oct		CIUSS PIOU.
		1-001	2-0(1	<u>3-0(1</u>	4-001
Week 02			12 5 12 6	12 1 12 2	12 1 12 2
	12.5-12.0		12.5-12.0	15.1-15.2	15.1-15.2
		9 Oct	Cynn. & Quaur. Suri.		Space Curves
		8-0ct	9-06	10-06	
Week 03	HW 02 DUE		12 2 12 1	QZ 02	14 1 14 2
	13.1-13.2		13.3-13.4	13.3-13.4	14.1-14.3
	Deriv and integ of V.Fs		Arc Lgth and Curvat.	Motion in Space	Fricts of Sev. Vars
	14-Oct	15-0ct	16-Oct	17-Oct	18-Oct
Week 04	HW 03 DUE				
	14.1-14.3		EXAM 01 Review	EXAM 01	14.4
	Partial Derivatives				Tang PIn and Lin. Appr.
	21-Oct	22-Oct	23-Oct	24-Oct	25-Oct
Week 05			HW 04 DUE		FALL BREAK
	14.5		14.6	14.7-14.8	
	The Chain Rule		Direct. Derivs	Max and Min Values	
	28-Oct	29-Oct	30-Oct	31-Oct	1-Nov
Week 06	FALL BREAK		QZ 03	ATHENS TRIP	ATHENS TRIP
			14.8		
			Lagrange Multipliers		
	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov
Week 07				ATHENS TRIP	ATHENS TRIP
Week of	15.1		15.2		
	Double Ints over Rctnls		Dbl Ints over Gen. Reg.		
	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov
Week 08			HW 05 DUE		
	15.3		15.4-15.5	EXAM 02 Review	EXAM 02
	Dbl Ints in Polar		Mult. Ints. Apps.		
	18-Nov	19-Nov	20-Nov	21-Nov	22-Nov
Week 09					HW 06 DUE
WEEKOS	15.6		15.7	15.8	15.9
	Triple Integrals		Triple Ints in Cyl.	Triple Ints in Sph.	Chng of Vars Mult. Ints
	25-Nov	26-Nov	27-Nov	28-Nov	29-Nov
Week 10			QZ 04		
WCCK 10	16.1		16.2	16.3	16.4
	Vector Fields		Line Integrals	Fund. Thm of Line Ints	Green's Theorem
Wook 11	2-Dec	3-Dec	4-Dec	5-Dec	6-Dec
			HW 07 DUE		
WEEK II	16.5		16.6	16.7	16.8
	Curl and Divergence		Parametric Surfaces	Surface Integrals	Stokes' Theorem
	9-Dec	10-Dec	11-Dec	12-Dec	
Week 12		_	Final Exams		
		Quiz Day			MidTerm/Final
		HomeWo	rk		No Class

FALL 2019 - KARAGIANNIS						
Time Block	Monday	Tuesday	Wednesday	Thursday	Friday	
09:00 - 09:30						
09:30 - 10:00						
10:00 - 10:30						
10:30 - 11:00	Office Hours		Office Hours	Office Hours	Office Hours	
11:00 - 11:30						
11:30 - 12:00						
12:00 - 12:30	MATH 121 K		MATH 121 K	MATH 121 K	MATH 121 K	
12:30 - 13:00	L2		L2	L2	L2	
13:00 - 13:30	MATH 201 K		MATH 201 K	MATH 201 K	MATH 201 K	
13:30 - 14:00	L2		L2	L2	L2	
14:00 - 14:30	MATH 120 K	Available by	MATH 120 K	MATH 120 K	MATH 120 K	
14:30 - 15:00	L2	Appointment	L2	L2	L2	
15:00 - 15:30						
15:30 - 16:00	Office Hours	STAT 205 A	Office Hours	STAT 205 A	Office Hours	
16:00 - 16:30	Ollice Hours	LAB 6		LAB 6	Oncertours	
16:30 - 17:00	Available by		Available by		Available by	
17:00 - 17:30	Appointment		Appointment		Appointment	
17:30 - 18:00						
18:00 - 18:30						
18:30 - 19:00						
19.00 - 19.30						
10.00 10.00						