Language:		English	<u> </u>
Print	CI	ose	

2021 Academic Year Course Description and Syllabus

Course Name	Instructor Name	
Developmental Biology(2credits) [ENES356] Developmental Biology(2credits) [SESI361]	Shoko Nishihara	

Course numbers are displayed in blue color after course names.

Semester Spring Semester

Course Sub Title (for general course and seminors)

Learn the basic concepts and molecular basis of morphogenesis of multicellular organisms from fertil

General Description

Learn the basic concepts and molecular basis of morphogenesis of multicellular organisms from fertilization to early development and organ formation. Beginning with differential regulation of gene expression during development, it proceeds to signal transduction and extracellular matrix. In addition, they learn fertilization, early development, and organ formation, and systematically acquire basic knowledge about the development of living things. Perform a periodic test.

Goals and Objectives

- 1. Explain the differential regulation of gene expression during development.
- 2. Explain signaling in development.
- 3. Explain fertilization.
- 4. Explain the initial occurrence.
- 5. Explain organ formation.

General Education / Faculty Courses: Most relevant Learning Outcomes for this course.

- Students are able to learn the knowledge necessary in the specialized field and utilize it.
- Students are able to have an inquiring mind/intellectual curiosity and collect the related knowledge from a wide range of information media.
 - Students are able to analyze the issues/problems and solve them through critical/creative thinkin g.

Students are able to communicate with each other in a group.

Students are able to properly describe opinions and claims of their own.

Students are able to actively take an action under their self-management and display their leader ship.

Students are able to have a sense of ethics and be aware of the social contribution and responsib ility.

Students are able to be conscious of their contribution to the international communities.

Instructor has work experience in the relative field of this course.

Yes

Years and/or months of work experience

21 year(s)

Detail of Instructor's work experience

Analysis of glycan functions in development

Course Syllabus based on work experience

Embryonic development

Course Syllabus

Course Sy	Course Syllabus		
	Content		
Lecture contents		Explanation of the outline of the class	
	Self-study Assignments		
Class 2	Lecture contents	Understand development: new organs formation	
	Self-study Assignments	Read the corresponding textbook part.	
Class 3	Lecture contents	Differential gene expression in development 1	
Class 5	Self-study Assignments	Read the corresponding textbook part.	
Class 4 Class 4 Lecture contents Self-study Assignments		Differential gene expression in development 2	
		Read the corresponding textbook part.	
Class 5	Lecture contents	Intercellular communication in development 1	
Class J	Self-study Assignments	Read the corresponding textbook part.	
Class 6	Lecture contents	Intercellular communication in development 2	
C1a55 0	Self-study Assignments	Read the corresponding textbook part.	
Class 7	Lecture contents	Determination of cell fate and early development; fertilization	
Class I	Self-study Assignments	Read the corresponding textbook part.	
Class 8	Lecture contents	Early development of metazoans; nematodes	
Ola55 0	Self-study Assignments	Read the corresponding textbook part.	
Class 9	Lecture contents	Early development of Drosophila	
Class 9	Self-study Assignments	Read the corresponding textbook part.	
Class 10	Lecture contents	Drosophila somitogenesis	
Class IU	Self-study Assignments	Read the corresponding textbook part.	
	Lecture		

Class 11 contents		Early development of vertebrates; amphibians
	Self-study Assignments	Read the corresponding textbook part.
Class 12 Lecture contents Self-study Assignments		exam
Class 13 conto	Lecture contents	Early development of mammals
	Self-study Assignments	Read the corresponding textbook part.
Lecture contents		From ectoderm to central nervous system and epidermis
Class 14	Self-study Assignments	Read the corresponding textbook part.
Class 15	Lecture contents	exam
Class 13	Self-study Assignments	

Evaluation/Assessment

Assessment	Percentage	Evaluation Criteria (Explanation)
Final Exam	100%	Final exam
Midterm		
Papers		
Performance/Works		
Continuous Assessment (quizzes, assignments, etc.)		
Other		
Remarks about grading		Perform the exam (added to the final exam) that is perform ed twice in class.

Grading Method:ABC

Course Materials

1. ギルバート発生生物学 (メディカルサイエンス・インターナショナル)

Classes are conducted according to the textbook.

Reference Materials

nothing special

Advice for Prospective Students

It is desirable to take molecular biology and cell biology.

Estimated time to prepare and to review for each class session. (incl. assignments, tests, papers, etc): 4hrs

Implementation of Active Learning

Yes

- Others

I sometimes ask questions during class.

Will you use ICT for class or to support self-learning?

No

How to give feedback for assignments (mid-term exams, reports, etc.)

Make time to review or explain in class.

Language used in class

Japanese

Print

Close

Link URL: https://plas.soka.ac.jp/csp/plas/slb.csp?nd=2021&sm=1&mk=11&lc=108671