City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Over	view				
Course Title:	Principles of Analytical Chemistry				
Course Code:	CHEM2004 (and CHEM2004A)				
Course Duration:	1 semester				
Credit Units:	4 (3) credits				
Level:	B2				
Proposed Area:	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Study of Societies, Social and Business Organisations				
(for GE courses only) Science and Technology English					
Medium of English					
Assessment: Prerequisites: (Course Code and Title)	Nil				
Precursors: (Course Code and Title)	Nil				
Equivalent Courses: (Course Code and Title) BCH2004 (and BCH2004A) Principles of Analytical Chemistry					
Exclusive Courses: (Course Code and Title)	Nil				

Note: CHEM2004A does not contain any practical component, and has a credit unit value of three (3).

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course aims to provide students with an understanding of the principles of analytical chemistry, including quantitative analysis based on titrations and instrumental analysis based on modern analytical instruments. It is an introductory course in analytical chemistry. In this course students will develop practical experience in laboratory analysis of the properties and concentrations of chemical molecules, and practice classical and instrumental techniques for the qualitative and quantitative analysis of compounds. The knowledge and skills from this course will prepare graduates for industrial and research applications in analytical chemistry.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discor	ery-enr	ichod
110.	CILOS			•	
		(if		ılum rel	
		applicable)		g outco	
			(please	tick	where
			appropriate)		
			A1	A2	A3
1.	Describe the basic principles of analytical chemistry, with	45%	✓		
	emphasis on solution equilibrium and classical methods of				
	analysis, and on selected instrumental analysis methods				
	such as spectroscopy and chromatography, and understand				
	the use of such principles in chemical, biochemical and				
	environmental analysis.				
2.	Select an appropriate instrumental procedure for an	20%	√	√	
	analytical or environmental analysis based on spectroscopic	2070			
	and chromatographic methods, and reliably implement it				
	with accuracy and precision.				
3.	•	20%			
3.	Design an experimental protocol for analytical or	20%		•	•
	environmental analysis and implement with accuracy and				
	precision.				
4.	Communicate the chemical measurement and analysis	15%		✓	✓
	results to relevant professionals in written reports with				
	conclusions based on statistical analysis of the				
	experimental data.				
* If w	eighting is assigned to CILOs, they should add up to 100%	100%			l

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA Brief Description		CILO No.				Hours/week
	_	1	2	3	4	(if applicable)
Lectures and	Teaching and learning will be primarily	✓				3
tutorials	based around lectures and tutorials					
	examining basic principles of classical					
	and instrumental analytical chemistry					
	and their applications in chemical,					
	biochemical and environmental analysis.					
Lectures,	Teaching and learning will be based on a		\checkmark			2
tutorials and	combination of lectures and tutorials and					
practicals	practicals to explain how to select or					
	design an appropriate instrumental					
	method or procedure and apply data					
	analysis techniques for practical					
	chemical, biochemical and					
	environmental analysis.					
Design of an	Based on the knowledge of analytical or			\checkmark		2
experimental	environmental analysis on equilibrium					
protocol	calculation and titration methods,					
	students will design an experimental					
	protocol for these measurements.					
Practicals	Teaching and learning will be based on				✓	2
	practicals to help students to prepare					
	written reports on their practicals with					
	conclusions based on statistical analysis					
	of the experimental data.					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks
	1	2	3	4		
Continuous Assessment: <u>30</u> %						
Tutorial assignments and/or quizzes		√	√	√	15%	30% weighing for students taking CHEM2004A
Practicals	√	√	√	√	15%	0% weighing for students taking CHEM2004A
Examination: 70% (duration: 3 hours)						
* The weightings should add up to 100%.			•		100%	

^{*} The weightings should add up to 100%.

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

[&]quot;A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Tutorial assignments	Ability to explain in detail of applying principles, concepts and methods to solve chemical, biochemical and environmental problems using instrumental analytical methods	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Practicals	Develop practical experience in laboratory for chemical analysis	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	Capacity for self-directed learning to understand the principle of analytical chemistry and practical applications	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Data treatment

Gravimetric methods

Aqueous solutions

Equilibrium calculations

Titrimetry/Precipitate formation

Complex-formation/ Complex titrations

Acid-base titrations/ Non-aqueous titrations

Basic electrochemistry

REDOX titrations

Potentiometry

Spectrophotometry

Atomic spectroscopy/ Molecular spectroscopy

Gas chromatography/ Liquid chromatography

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Quantitative Chemical Analysis (Sixth Edition)				
	Author: Daniel C. Harris				
	Publisher: W. H. Freeman and Company				
2.	Fundamentals of Analytical Chemistry				
	Authors: Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch				
	Publisher: Brooks Cole				
3.	Online Resources:				
	To be provided, as required, in lectures and tutorials.				

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

	GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
	Demonstrate the capacity for self-directed learning	
PILO 2:	Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3:	Demonstrate critical thinking skills	
PILO 4:	Interpret information and numerical data	
PILO 5:	Produce structured, well-organised and fluent text	
PILO 6:	Demonstrate effective oral communication skills	
PILO 7:	Demonstrate an ability to work effectively in a team	
PILO 8:	Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9:	Value ethical and socially responsible actions	
	: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	for the GE area (Area 1: Arts and Humanities: Area 2: Study

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: http://www.cityu.edu.hk/edge/ge/faculty/curricular_mapping.htm.)

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task