

BIOLOGY 230 Genetics and Molecular Biology

1. Factual information			
Module title	SNCB230 – Genetics and Molecular Biology		
Module tutor	Georgia Tsoulfa, PhD	Level	5
Module type	Taught: Lecture/guided discussion/lab	Credit value	4 US
Mode of delivery	100% face-to-face		
Notional learning hours	200 notional hours: 49.5 hrs lecture/tutorials, 3 lab work and reporting , 118.5 hrs guided indep	•	

2. Rationale of the module within the degree scheme/Prerequisites/other entry requirements

This is a required module for all Biological Sciences majors. This module is designed to introduce the basic principles of modern genetics and molecular biology, the framework within which new discoveries are interpreted, and the relations among various branches of biological research. Students who are interested in careers in biological sciences, biomedical sciences, and biotechnology should find that the course provides a firm grasp on an understanding of the concepts that will serve them well in their academic track that lies ahead.

3. Aims of the module

The goal of this module is to provide students with an understanding of fundamental concepts in genetics and molecular biology. In this context, the central dogma in molecular biology, cell division, regulation of gene expression, mendelian, non-mendelian and molecular genetics, genes linkage and mapping, mutations, biotechnology, developmental, evolutionary, and population genetics are examined. Additionally, students develop skills, such as sequence analysis, computational methods, and statistics – all of which they will acquire within the lab session of the module, and all of which are highly valued in today's research environment.

4. Pre-requisite modules or specified entry requirements **SNCB112, SNCB113**

5. Is the module compensatable?

N/A

6. Are there any PSRB requirements regarding the module? N/A

7. Intended Learning Outcomes					
A. Knowledge and understanding	Programme LOs	Learning and teaching strategy			
On successful completion of the course,	A1, A2, A3	Depending on the delivery mode, some or			
students will be able to		all of the following Learning and Teaching			
A1. Describe the structure and properties		methods			
of DNA and chromosomes, DNA replication		 Scheduled Learning & Teaching Methods 			
and gene expression and regulation.		 Lectures, Tutorials, Laboratory, 			
A2. Understand how mutations occur, their		Seminars, Fieldwork			
effects and describe the cell's repair		• E-learning & Blended Learning Methods			
mechanisms.		 eLectures, Computer-based work, 			
A3. Understand mendelian and non-		Fieldwork			
mendelian genetics and their underlying		 Project and Placement Learning Methods 			
mechanisms.		 Group project, Site visits, Research 			
A4. Describe cell cycle, cell division modes		project/dissertation			
and the involved regulatory mechanisms.					
A5. Understand the techniques of					
molecular biology and molecular genetics					
and how they are used to analyze					
biological structure and function.					

7. Intended Learning Outcomes				
B. Cognitive skills	Programme LOs	Learning and teaching strategy		
On successful completion of the course,	B1, B2, B3	Depending on the delivery mode, some or		
students will be able to		all of the following Learning and Teaching		
B1. Investigate the way the techniques of		methods		
genetics and molecular biology are used in		 Scheduled Learning & Teaching Methods 		
basic research, clinical research, and		 Lectures, Tutorials, Laboratory, 		
biotechnology application.		Seminars, Fieldwork		
B2. Apply analytical thinking and problem-		• E-learning & Blended Learning Methods		
solving skills to logic "puzzles" in genetics.		 eLectures, Computer-based work, 		
B3. Recognize the power and limitation of		Fieldwork		
bioinformatics methods in answering		 Project and Placement Learning Methods 		
questions related to biological phenomena.		• Group project, Site visits, Research		
		project/dissertation		

7. Intended Learning Outcomes				
C. Practical and professional skills	Programme LOs	Learning and teaching strategy		
On successful completion of the course,		Depending on the delivery mode, some or		
students will be able to	C1, C2	all of the following Learning and Teaching		
C1. Solve quantitative genetics problems		methods		
including the use of bioinformatics, basic		 Scheduled Learning & Teaching Methods 		
statistics and probabilities.		 Lectures, Tutorials, Laboratory, 		
C2. Interpret information encoded in		Seminars, Fieldwork		
sequences, design and use primers and		• E-learning & Blended Learning Methods		
conduct phylogenetic analyses.		 eLectures, Computer-based work, 		
		Fieldwork		
		 Project and Placement Learning Methods 		
		• Group project, Site visits, Research		
		project/dissertation		

7. Intended Learning Outcomes				
D. Key transferable skills	Programme LOs	Learning and teaching strategy		
On successful completion of the course,		Depending on the delivery mode, some or		
students will be able to	D1, D2	all of the following Learning and Teaching		
D1. Establish intellectual, personal and		methods		
team skills in the context of biological		• Scheduled Learning & Teaching Methods		
research		 Lectures, Tutorials, Laboratory, 		
D2. Develop research ideas, form		Seminars, Fieldwork		
hypotheses, propose experiments to		• E-learning & Blended Learning Methods		
test them, and interpret data.		 eLectures, Computer-based work, 		
		Fieldwork		
		• Project and Placement Learning Methods		
		• Group project, Site visits, Research		
		project/dissertation		

8. Indicative content.		
Mendelian and non-mendelian genetics		
Cell division		
Recombination and gene linkage		
 Genetics of bacteria and viruses 		
Central Dogma – description and translation		
Regulation of gene expression		
Molecular cloning		
Mutations and DNA repair mechanisms		
Cancer genetics		

• Population genetics and molecular evolution

- Multifactorial diseases
- The UCSC Genome Browser (lab)
- Recombinant DNA techniques (lab)
- Homolog searches using NCBI's BLAST tool (lab)
- Phylogenetic analyses (lab)

9. Assessment strategy, assessment methods, their relative weightings and mapping to module learning outcomes

Assessment Strategy: All summative assessments will be written by the teaching faculty, approved by an external examiner, and common learning outcomes and marking criteria will be applied to all students regarding these assessments. Module grade will be based on summative assessments listed in the Assessment Task table below. Formative assessments methods will also be used.

Summative Assessments

- 1. Homework: 15% (average of five components)
- 2. Lab reports (written): 10%
- 3. Midterm examination: 30% (Theory 20% and lab 10%)
- 4. Final Assessment: 45% (Theory 80%, Lab 20%)

Specific Assessment Guidelines and Grading Criteria are provided in due time.

Formative Assessments

Short quizzes Short diagnostic tests Short group presentations Pair or group work in class

Assessment Task	Weight	Week submitted	Grading (P / F / %)	Module Learning Outcome(s) the assessment task maps to
Homework (written, 5 pieces of	0.15	Evenly distributed	%	A1, A2, A3, A4, D1,
Homework):		throughout the term		D2
Lab reports (written, 5 reports)	0.10	Evenly distributed	%	B1, B2, B3, C1, C2
		throughout the term		
Midterm Exam (written, 1 hour):	0.30	Evenly distributed	%	A1, A2, A3, A4, B1,
		throughout the term		B2, B3
Final Assessment (written, 2 hours):	0.45	12	%	B1, B2, B3, C1, C2,
				D1, D2

10. Teaching staff associated with the module			
Tutor's name and contact details Contact hours			
Dr Georgia Tsoulfa , American College of Thessaloniki	(Office Hours)		
email: gtsoulfa@act.edu			

Mini CV:

Georgia Tsoulfa, PhD, is the director of the Center for Talented Youth at Anatolia College in Greece and a biology professor at the American College of Thessaloniki. Over the course of her career, Georgia has been a medical researcher, a published scientist, given numerous presentations to scientific conferences, and has been teaching in tertiary education for many years. She has collaborated on EU-funded projects and has established European and International partnerships with researchers at universities renowned for their expertise in the field of gifted education. She has served on academic and scientific advisory boards and committees. Georgia is an advocate of sharing ideas and practices with global experts in gifted education and STEM subjects in an aim to promote the empowerment of advanced learners and to support teachers in implementing practices to enhance student engagement and motivation. She received a B.Sc. in Biology from King's College London and obtained a Ph.D. from the Faculty of Medicine of University College London.

11. Key reading list				
Author	Year	Title	Publisher	
Daniel Hartl	2020	Essential Genetics: A Genomics Perspective, 7 th edition	Jones and Bartlett	

Software/Tools			
Name	URL	Type (Open Source / Proprietary)	
Labster – online labs	https://www.labster.com	Proprietary	
BLAST: Basic Local Alignment Search Tool	https://blast.ncbi.nlm.nih.gov/Blast.cgi	Open Source	
Public databases for molecular typing and microbial genome diversity	<u>https://pubmlst.org/bigsdb?db=pubmlst_plasm</u> id_isolates&page=plugin&name=PCR	Open Source	
Expasy - translation tool ACTivity Learning Management S	https://web.expasy.org/translate/	Open Source	

To Login Use the same username and password that you use to log in to ACT computers. Your computer and ACTivity account passwords are synchronized. You can change your ACTivity password by changing your computer account password using a campus computer or via Remote Access & VPN Service (<u>https://vpn.act.edu/</u>). If you forgot your password, you can send a reset password request using: https://forms.gle/1sYKMK2jThctUtPQ9

12. Other indicative text (e.g. websites)

Additional material uploaded on Moodle.

Learning Hub

ACT's Learning Hub offers students assistance with their writing assignments and overall development of language skills. Located on the 2nd floor of the Bissell Library, the Learning Hub also houses the Math Tutoring services, and operates on an appointment or walk-in basis throughout the academic year (https://anatolia.libguides.com/learninghub)

Student Services

The college provides many services to the students, including:

- Clubs and Organizations
- Field Trips
- Food Services
- Health and Counseling Services
- Housing
- Athletics programs and Facilities
- Career Services and Guidance
- Residence Permit Support
- Service learning opportunities
- Study Abroad Advising

Most services are free to the student. For more information please refer to Undergraduate student handbook, or email: studentservices@act.edu

13. List of amendments since last (re)validation				
Area amended Details Date Central				
		Quality informed		

GRADING SCALE

Grade	UK points	US Letter	US point
Description	en penne	Grade	grade
Excellent	70+	А	4.0
Very Good	65-69	A-	3.67
(high)			
Very Good	60-64	B+	3.33
(low)			
Good (high)	55-59	В	3.0
Good (low)	50-54	B-	2.67
Satisfactory	45-49	C+	2.33
(high)			

Satisfactory (low)	40-44	С	2.0
Fail	0-39	F	0

<u>Grade Descriptors</u>: These descriptors outline the typical characteristics of the standard work associated with each grade.

Excellent: Superior performance; a high level of critical analysis and evaluation; incisive and original; exceptionally well researched; high quality presentation; exceptional clarity of ideas; excellent coherence and logic; trivial or very minor errors.

Very Good: Very good performance; a very good level of critical analysis and evaluation; significant originality; well researched; clarity of ideas, thoughtful and effective presentation; very coherent and logical; minor errors only.

Good: A good performance; a good level of critical analysis and evaluation; some evidence of originality; reasonably well researched; ideas generally clear and coherent; some but not significant weakness.

Satisfactory: Satisfactory performance—at least passable; acceptable level of critical analysis and evaluation; little evidence of originality; adequately researched; ideas fairly clear and coherent, though some significant weakness.

Fail: Clearly below the pass standard; lacking substance, knowledge and understanding; ideas confused and incoherent; fundamental weaknesses in most areas; fails to meet the Learning Outcomes.

NOTICE FOR ORAL PRESENTATIONS

Oral presentations are an essential component of the assessment scheme for this course as they fulfill the ability to understand and clearly present and discuss different aspects of the material taught and the knowledge acquired. Oral presentations allow the opportunity for students to master their communication skills, their writing and speaking ability, which necessitates interaction with their classmates who also provide their critique of the speaker's performance (structure, content, visuals and non-verbal delivery skills). When delivering oral presentations, students will be assuming the role of the instructor, i.e., 1) the students will screen share their presentations to be visible by all students, both in-class and remotely attending students, 2) the camera will point to the student(s) presenting who will be visible to both groups, in-class and remotely attending students, and 3) both in-class and remotely attending students, will interact via Q&A (questions and answers).

The oral presentations will not be recorded by the institution or/and the instructors, and **will not be** stored by any means; distributed; published; uploaded; or/and disclosed to any third persons or parties.

Students, who attend both in-class and remotely, are prohibited from recording; storing by any means; distributing the online sessions, publishing; uploading; or/and disclosing to any third persons or parties the oral presentation and any related information. It should be reminded that the unlawful and unauthorized processing of personal data is prohibited by the European and Greek laws.

On grounds that are related to your particular situation, you have the right to object to the processing or restrict the processing of your personal data in regard to the oral presentation. The request must be properly justified and submitted to the course instructor.

If you have any Questions in relation to the protection of your personal data or you wish to exercise your legal rights, please contact the Data Protection Officer of Anatolia College by using the following contact details: <u>privacy@anatolia.edu.gr</u>

GRADING & ACADEMIC POLICIES

ASSESSMENT DEADLINES

Students must submit work by the deadlines set in the module outline. Where coursework is submitted late and there are no accepted extenuating circumstances it will be penalized in line with the following tariff: Submission within 6 working days: a 10% reduction for each working day late down to the 40% pass mark and no further. Submission that is late by 7 or more working days is refused, mark of 0. Submission after the deadline will be assumed to be the next working day. Mitigating circumstances will be evaluated by the AS&PC

Assessment of non-degree students taking OU-validated courses (e.g., Study Abroad)

Same method of assessment, i.e. only "summative" assessments determine final grade. However, since those students are not pursuing an OU degree, they are not subject to resits or second marking, and final grade is calculated as the (weighted) average of all "summative" assessments, without requirement of passing all summative assessments to pass the course.

Revised Absence Policy – Effective Fall 2019

Students are expected to attend and participate in all of their courses throughout the term, including the first week. Those who fail to do so may be administratively withdrawn from individual courses of the College. This may affect the students' scholarship and financial aid eligibility.

Successful Attendance

A student is considered to have successfully attended a course if he/she has attended 75% of the course lectures. Thus, for a typical ACT course with 42 hours of contact time, the maximum number of absences

stands at 10 hours per course. This policy applies to all ACT students, degree-seeking and Study Abroad. Please note that absences are counted on an hourly basis. Absences due to participation in school-related trips and activities may count toward this limit. Absences for any other reason cannot be excused.

ACADEMIC INTEGRITY

A student committing an act of Academic Dishonesty in a given course will receive an F (0 percentage points) in the assignment where the academic infraction took place. If a student commits an act of Academic Dishonesty for a second time in the same course, this student will receive a failing grade in that course.

Special Accommodations

If you have specific physical, psychological, or any other learning disabilities that you believe may require accommodations for this module, you should visit the Dean's office by bringing the appropriate documentation.

The Learning Hub (1st floor, Bissell Library) is staffed by experienced English faculty and you are encouraged to use its services.