

Course Syllabus

Course Code	Course Title	ECTS Credits
COMP-201	Systems Analysis and Design	6
Prerequisites	Department	Semester
Sophomore Standing	Computer Science	Fall, Spring
Type of Course	Field	Language of Instruction
Required	Computer Science	English/Greek
Level of Course	Lecturer(s)	Year of Study
1 st cycle	Dr Vasso Stylianou	2 nd
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Address different types of organizational needs which may undertake some information technology-based solution.
- Introduce the various aspects of feasibility and their use in the determination of project feasibility.
- Examine several development methodologies which may be used to manage the software development process. Such methodologies include: Structured Systems Analysis and Design Methodology (SSADM) and the Systems Development Life Cycle (SDLC); agile and iterative methodologies including Prototyping, Rapid Application Development and other agile software development approaches; Object-Oriented Analysis and Design using UML and other methodologies.
- Examine a variety of information gathering techniques and their potential use.
- Cover formal project management techniques and team dynamics.
- Identify, evaluate (Cost vs. Benefit analysis), and suggest different systems alternatives.
- Briefly discuss security, validation, and privacy issues relating to data maintenance and accessibility.
- Address the objectives for effective design (input, output, database, data entry procedures). Introduce human-computer interaction and incorporate its principles in the software design.
- Discuss successful information system implementation by addressing training requirements and possibilities, physical conversion strategies, and the need for evaluation.

Learning Outcomes:

After completion of the course, students are expected to be able to:

- 1. Understand the types of organizational needs that can be addressed using information technology-based solutions.
- 2. Initiate, specify, and prioritize information systems projects by the determination of various aspects of feasibility for these projects.
- 3. Understand and compare different systems development methodologies.
- 4. Use at least one specific methodology for analyzing an organizational situation (a problem or opportunity), modeling it using a formal technique, and specifying requirements for a system that enables a productive change in the way the organization operates. Within the context of this methodology, students will learn to write clear and concise requirements' documents and convert them into technical specifications.
- 5. Communicate effectively with various organizational stakeholders to collect information using a variety of techniques and to convey proposed solution characteristics to them.
- 6. Manage information systems projects using formal project management methods.
- 7. Identify various systems acquisition alternatives, including the use of packaged systems and outsourced design and development resources.
- 8. Compare various acquisition alternatives systematically including performing a cost and benefit evaluation of the alternatives.
- 9. Incorporate principles of security and user experience from the beginning of the systems development process.
- 10. Design high-level logical system characteristics (user interface design, design of data and information requirements).
- 11. Propose a user-training program and a conversion strategy for the successful implementation of the information system.
- 12. Use CASE tools effectively to complete different tasks of the software development process.

Course Content:

- 1. Identification of opportunities for IT-enabled organizational change. Organizations and their information needs. Types of information systems. Systems modeling.
- 2. Software development methodologies:
 - a) Structured Systems Analysis and Design (SSADM) and the Systems Development Life Cycle (SDLC)
 - b) Agile and iterative systems development as in Prototyping, Rapid Application Development, other agile development methodologies.
 - c) Object-Oriented Systems Analysis and Design (OOAD); the Unified Modeling Language (UML).
- 3. The use of CASE tools.
- 4. Project management including initiation, selection, prioritization. Establishing project feasibility. Planning and managing team members and activities.
- 5. Gather information requirements using different data collection techniques
- 6. Process modeling using data flow diagrams
- 7. Analysis and specification of system requirements. Writing process specifications. Data dictionaries.

- 8. Implementation alternatives; Packaged vs. Custom-made software, Outsourcing vs. Inhouse development. Cost and benefit evaluation of alternatives.
- 9. Design effective output and input. Understand design objectives.
- 10. System data requirements. Design the database. Security issues.
- 11. Human-computer interaction principles. Design the user interface; effective dialog and user feedback.
- 12. User experience, training issues.
- 13. Physical conversion strategies for implementation.
- 14. Security and disaster recovery.
- 15. New system evaluation.

Learning Activities and Teaching Methods:

Lectures, Exercises, CASE tools demonstrations, Project workshop sessions

Assessment Methods:

Final Exam, Midterm Exam, Group Project

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Systems Analysis and Design, 9/e	K. Kendall, J. Kendall	Pearson	2013	9780273787105

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Object-Oriented Analysis and Design for Information Systems	R. S. Wazlawick	Elsevier. Science Direct	2014	978012418736
Object-Oriented Analysis and Design with Applications,	G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, K.	Pearson	2009	9788131722879

3/е	Houston			
Systems Analysis and Design Methods, 7/e	J. Whitten, L. Bentley	McGraw- Hill/Irwin	2007	9780073052335