
1/4 2023-08-08 02:33:41

2023Year 2nd Semester Syllabus

Created Date 2023-08-04 10:36:24 Last-Modified 2023-08-07 15:01:21

Course Title COMPILER DESIGN
Course
Code-Section

CSI4104-01

Credit/Time/
Experiment,Lab,Pr
actical Technique
Time

3/Tue8,9,Thu7 Department Computer Science

Time Tue8,9,Thu7 Location EngHD504

Exam Date & Time Midterm exam Final exam

Class Language English Evaluation Type Absolute evaluation

Instructor's Profile

Name Burgstaller bernd

Contact
Information

Telephone 02-2123-5728

Department
DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING

Mail BBURG@YONSEI.AC.KR

Office Engineering Hall 4, D910
Interview
information

Zoom consultations upon
appointment via email

TA's Name &
Contact
Information

Name
Contact
Information

Telephone

Course Description
Brief Introduction of the
Course

Please note: this is the undergraduate course on compiler design. It does not share any content with the
graduate course CSI8105-01 on ``Advanced Compiler Construction’’. Broadly speaking, the
undergraduate course comprehensively discusses programming language design patterns (for lexing,
parsing, semantic analysis, code generation and language run-times), while the graduate course is
dedicated to compiler optimizations. The undergraduate course is recommended as a prerequisite for the
graduate-level course.

Overview
A compiler is a computer program that translates text written in a given language (called the source
language) into another language (the target language). With most compilers the source language is a
high-level programming language (e.g., C, C++, Java), and the target language is a lower-level
representation such as assembly language or bytecode.
In this course we will focus on compiler techniques needed to implement programming languages on a
virtual machine. In a series of five assignments, students will implement a compiler that translates a
subset of C into Java bytecode. This bytecode can then be executed on the Java virtual machine (JVM).

Course Goals

1.

Korean .

40%

English

This course will cover both practical and theoretical aspects of a
compiler. Our main emphasis will be on the compiler frontend (i.e.,
scanning, parsing, semantic analysis) and code-generation for the
JVM.

2.

Korean .

30%

English

Crafting a compiler involves the use of algorithms and data
structures. Software engineering principles need to be applied when
conducting a reasonably large, object-oriented compiler project. We
will employ Java packages, subtype polymorphism and dynamic
dispatching.

3.

Korean .

30%

English

Two software-engineering topics will be covered for developing our
compiler: Exception handling in Java, and the Visitor design pattern.
This material will be interspersed with the regular lectures, in due



2/4 2023-08-08 02:33:41

time for the assignments.

4.

Korean

0%

English

5.

Korean

0%

English

Core Competencies

The total measurable competencies must be 100%. Each course objective should set the competency as
25%. The core and major competencies should equal at least 50%.

Sub-Competencies/Learning
Unit1

Sub-Competencies/Learning
Unit2

Sub-Competencies/Learning
Unit3

Core Competencies(Liberal
Arts)Major competency(

Must reflect the interrelationship between core competencies (elective courses) and major competencies
(major studies).

This course addresses the foundations of compiler construction. Compilers receive programs written in a
high-level programming language as input. A study on compilers is therefore strongly related to
programming language syntax and semantics.
Compilers employ fundamental models from language theory, such as regular expressions, finite state
automata and context-free grammars. Regular expressions are used for pattern matching in scripting
languages (e.g., with Python, Perl, and JavaScript) and with many operating system shells, command-line
utilities (grep, sed, find) and text editors. Automata are useful for performing keyword searches in text
documents, e.g., with web queries. Context-free grammars are used for the definition of programming
languages and with XML document type definitions.

Sustainable Development
Goals

Average Recommended
Amount of Learning per

Average Reading
Volume

Average amount of
writing(Based on A4)

Course Methods (%)
Total Amount 100

Lecture Practice Training Presentation Dabate Team Project

100% 0% 0% 0% 0%

Course Methods 2
Select Relevant Items

PBL Subject Capstone Design CBL, Social
Innovation Course

Flipped Classroom Work
Experience,Internsh

Grading Policy(%)
Total Amount 100
Free Input for Other
Information

Midterm
exam

Final exam Quiz
Individual
Assignment

Team
Assignment

Attendance Others

26% 26% 0% 43% 0% 0% 5%

Assignment/
Report, Project Guide

Title of Assignment/Project Name, and
Method of Filling Out

Submission
Deadline

Type of Submission and Method

Prerequisite

The following courses are pre-requisistes
: Automata theory and formal languages
, Data structures, Programming
Languages, Object-oriented
Programming, Computer Programming

Online Course
Address

Course
Material

Course Material Name Author Publisher Publish Year ISBN



3/4 2023-08-08 02:33:41

Main Learner Precautions

Target students:
Fourth year (senior) students in Computer Science. Students from other majors are welcome subject to
the availability of seats (preference will be given to majors in Computer Science). This course is open to
exchange students.

The course is limited to 95 students, which is the maximum seat capacity of our designated lecture
room, D504.
Because of the volatility of the course registration (bidding) process, all estimates on the likelihood for
entering the course are unsound. Enquiries about this matter therefore will not be answered.

Course requirements:
The implementation language for this course is Java. Familiarity with Java or a related object-oriented
programming language is required for the assignments, although this requirement is somewhat
mitigated through the use of code skeletons that will be provided with the assignments.
The assignments will be implemented, tested, and submitted on Linux; basic familiarity with the Linux
command line and SSH is required (but a Linux quick-start guide will be provided if Linux is new to you).

Grading policy:
- 26.25%midterm exam
- 26.25% final exam
- 5% homeworks
- 37.5% assignments:
- 5% active classroom participation

All homeworks and assignments are individual assignments. Homeworks and assignments should be
turned in before or at the due date. When turned in late, 5% will be deducted from the grade per day
until the deliverable has been received, with a maximum extension of five days.

Assignments are marked based on an automated test script. Students will be provided with a
representative set of testcases, but not all testcases used for grading will be made public. Students are
encouraged to create their own testcases, to ensure that an implementation works correctly. Creating
good test cases is part of the learning process of this course.

Mastering the assignments is a requirement for the exams. Students are expected to apply the
techniques acquired with the assignments to exam problems.

The course language is English, including lectures, assignments, homeworks and exams. The course uses
absolute grading according to the following grading table (in %):

A: 100-80
B: 79-70
C: 69-60
D: 59-50
F: 0-49

Attatchment

week Period Weekly Topic & Contents Remarks

Weekly Plan

1
2023-09-01
2023-09-07

Introduction, Lexical Analysis

(9.1.) Fall semester
classes begin
(9.5. - 9.7.) Course
add and drop period

2
2023-09-08
2023-09-14

Regular Expressions

3
2023-09-15
2023-09-21

Automata

4
2023-09-22
2023-09-28

Context-free Grammars
09.28 추석



4/4 2023-08-08 02:33:41

5
2023-09-29
2023-10-05

Recursive Descent Parsing, Exception Handling for Parsing Errors

(9.28. - 9.30.) 추석연
휴
(10.3.) National
Foundation Day
09.29 추석, 09.30 추
석, 10.03 개천절

6
2023-10-06
2023-10-12

Abstract Syntax Trees

(10.8.) First third of
the semester ends
(10.9.) Hangul
Proclamation Day
10.09 한글날

7
2023-10-13
2023-10-19

Attribute Grammars

8
2023-10-20
2023-10-26

Midterm Exam
(10.20. - 10.26.)
Midterm
Examinations

9
2023-10-27
2023-11-02

Visitor Design Pattern

(10.27. - 10.31.)
Course withdrawal
period
(11.1. - 11.3.)
Application Period
for S/U evaluation

10
2023-11-03
2023-11-09

Type Checking

11
2023-11-10
2023-11-16

Run-time Environments
(11.14.) Second third
of the semester ends

12
2023-11-17
2023-11-23

JVM and Java Bytecode

13
2023-11-24
2023-11-30

Java Bytecode Generation, Java Class File Format

14
2023-12-01
2023-12-07

AST Interpreters, Bytecode Interpreters, Threaded Code Execution

15
2023-12-08
2023-12-14

Self-study week
(12.8. - 12.14.)
Self-study

16
2023-12-15
2023-12-21

Final exam week
(12.15. - 12.21.)
Final Examinations

• Students with disabilities(SWDs) can request accommodations related to lectures, assignments, or tests by contacting t

he course professor at the beginning of semester.
(However, accommodations may vary depending on the essentiality of lecture and discretion of professors.)  

[Lecture]

- Visual Impairment: alternative, braille, enlarged reading materials, note-taker

- Physical Impairment: alternative reading materials, access to classroom, note-taker, assigned seat

- Hearing Impairment: note-taker/stenographer, recording lecture

- Intellectual Disability/Autism: note-taker

[Assignments and Test]

- Visual/Physical/Hearing Impairment: (reasonable) extra days for submission, alternative type of assignment, extende

d test time, alternative type of test, arranging separate test room, and proctors, test ghostwriter
- Intellectual Disability/Autism: (reasonable) extra days for submission, alternative type of assignment


