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Review: Functions 

Correlation and regression are methods that relate two sets of 

numerical data.  Correlation gave us a sense of whether the 

variation in one quantity could be explained, or predicted, 

through the variation of the other; then we looked at 

regression as a way of finding a line of best fit.  This line of 

best fit provides a model for the relationship between the two 

sets of data – a function that estimates the response 𝑦̂ for a 

given predictor 𝑥.  We assumed the function relating these 

variables was linear: that is, that it took the form                         

𝑦 = 𝑚𝑥 + 𝑐.  However, there are an infinite variety of 

possible relationships that could arise between the variables: in practice, there is a core set of common 

functions that we need to be familiar with, in a scientific context.  Now we will turn our attention to 

what functions are, looking at a range of important functions that you should know, and some important 

skills that we need when working with functions.  

Examples of functions 

What are some situations where linear functions arise? 

 

 

 

 

 

 

Any type of function that is not a linear function (not of the form 𝑦 = 𝑚𝑥 + 𝑐) is called a non-linear 

function. 

 

Important knowledge and skills when exploring relationships between data sets include 

• familiarity with the more common nonlinear functions  

o what they look like when graphed, situations where they arise 

• fitting nonlinear equations to data 

• finding 𝑦 for a given 𝑥, or vice versa 

• finding important properties of the functions, such as maxima, minima, slopes, etc. 

We will develop some of these skills in the coming weeks, learning about the relevant mathematical 

techniques and software. 

What, exactly, is a function? 

Functions express a relationship between two1* variables. They describe 

• how a quantity evolves over time 

• how a response depends on a predictor 

• how an effect depends on a cause 

 

 

 
1 functions can exist between 3 or more variables, but we won’t consider them in this course 
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Functions can be expressed in various ways 

• As a graph 

 

• In words 

o Your final mark for this course is determine by … 

o To calculate the tax payable on your taxable income, … 

• As a formula 

𝑦 = 𝑓(𝑥) = 𝑠𝑖𝑛(𝑎𝑥 + 𝑏) 

• As a procedure  

o For natural number n, f(n) is the number of factors that divide into n. 

 

Function input and output 

Function input (abscissa, predictor, independent variable): 

• It’s the independent variable, because we are free to choose its value. 

• Generally called 𝑥 if there is no preferred symbol  

• Drawn on the horizontal axis 

• The allowed input values are called the functions domain (where it lives) 

Function output (ordinate, response, dependent variable): 

• It’s the dependent variable: its value depends on the choice of 𝑥. 

• Generally called 𝑦 if there is no preferred symbol 

• Drawn on the vertical axis 

• The allowed output values are called the functions range (where it can reach) 

If I have two sets of data, which do I choose which should be the independent variable 𝑥, and which 

should be the dependent variable 𝑦? 

• Any variable you have control over: 𝑥 

• Any timestamp variable2: 𝑥 

• Any variable showing a response: 𝑦 

• Any variable with repeated values: 𝑦 

 

 
2 Not a measurement of the time taken for something to occur, but a measurement of when (time and/or date) 

something has occurred, like the road toll data. We don’t have control over time, but when a timestamp is one of 

the two data sets, we usually want to consider how the response is varying with time. 
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Drawing the graph of a function 

• The simplest approach is to remember the shapes of standard functions 

• If you don’t know/remember: use sample values of x to calculate f(x) 

 

Linear functions 

 

The straight line has the formula 𝑦 = 𝑚𝑥 + 𝑐, where 

• 𝑚 is the slope 

• 𝑐 is the y-intercept 

 

Special cases: 
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Example: using a concentration-absorbance regression curve of a drug administered to 

patients 

• What concentration (W) is needed for an absorbance of 0.40? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

𝐴 = 0.0875 𝑊 − 0.3375 
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Non-linear functions 

Any type of function that is not a linear function (i.e. not of the form 𝑦 = 𝑚𝑥 + 𝑐 where the input 

variable x is raised to the power of 1) is called a non-linear function.  We will be looking at a range of 

non-linear functions: polynomials, exponentials and logarithms, sinusoids, and a few other useful 

functions.  

These types of functions had to be thought up to describe things we observe in real life – as important 

quantities in our world are rarely just simply a linear relationship! 

Quadratics and other polynomials 

A polynomial is a function of the form 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + ⋯ 

where the numbers 𝑎0, 𝑎1, 𝑎2,… are all known fixed constants or coefficients of 𝑥 to the various positive 

whole-number powers 0, 1, 2, 3, 4, … and so on. 

The largest power of x that we see in any polynomial is called the order of the polynomial.  Polynomials 

of first order are just linear functions, polynomials of second order are called quadratics, third-order 

polynomials are called cubics, fourth-order are quartics, etc. 

 

What order are the following polynomials? 

𝑦 = 4𝑥2  −  2𝑥 +  1                   𝑦 = 1 −  𝑥 + 𝑥2  −  𝑥3                 𝑦 = 𝑥4 + 3𝑥   

Order:    Order:       Order: 

 

 

We can use also use tools like Excel to fit polynomials to data very easily, and because you have more 

coefficients to adjust as you increase the order, the fit usually gets closer.  However, it is pretty 

uncommon for high-order polynomials to be the correct theoretical model for sets of data, which is why 

we usually stick to fitting low-order (usually linear or quadratic, sometimes cubic) polynomials unless 

there is a good reason to. 

Solving polynomial equations is difficult for orders higher than the cubics – the best approach is to use 

software (such as WolframAlpha).  It’s suprisingly easy to do this, let’s try solving the equations 

 𝑥3  −  2𝑥 + 1 = 0  and 𝑥3  −  2𝑥 + 1 = 𝑒𝑥 using WolframAlpha. 

 

Go to WolframAlpha.com, type “Solve x^3-2x+1=0” or “Solve x^3-2x+1=e^x” into the input 

box that appears, and hit return to see the magic begin!  

Write the output here of what solutions for x are for each case: 
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Quadratics 

Quadratics is a name we give to second-order polynomials, so we can solve them using WolframAlpha 

as well as some algebra methods you may have seen in school or other study.  However, they have some 

useful properties that are worth knowing, if you end up using them as a model for your data. 

 

The general formula for a quadratic is 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, for coefficients 𝑎, 𝑏 and 𝑐. 

 

The coefficients can be used to understand a lot about the shape of a quadratic. Have a think about: 

 

• The leading coefficient (coefficient of the highest power) 𝑎 tells us … 

 

 

 

• The constant 𝑐 tell us … 

 

 

• The graph of a quadratic is symmetric about 

its extremum (the point where it takes its 
maximum or minimum value, depending on 

its shape).  It is also symmetric about its 

zeros (the points where y=0, which is the 
same as saying the points where it cuts the x-

axis), if it cuts the x-axis. 

 

• This axis of symmetry is located where 𝑥 = −𝑏/2𝑎. 

 

 

It is easy to get Excel to fit: we create a Chart of the data, and then add a Trendline via the Add Chart 

Element ribbon menu item.  This trendline is a line of best fit, calculated to minimise the (least-squares) 

error in the same sort of approach we saw for linear regression.  We can choose the form of the trendline 

from a range of functions, including polynomials, and Excel will show the equation and R2 value.   

Once we have the equation, we can use it to estimate the independent variable that produces the 

extremum (maximum or minimum value, depending on the shape of the quadratic). 
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Solving a quadratic 

Apart from WolframAlpha, there are two standard algebraic approaches to solve quadratic equations3 

(this should be revision of some things from high school).  One approach is to factorise the quadratic, 

the other is to use the quadratic formula 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

where the quadratic we are solving is 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.  For a quadratic, we are looking for two 

solutions in general.  

Factoring a quadratic expression means to express it as a product of two linear expressions multiplied 

together. As an example when a=1, we want to write a quadratic expression in the form: 

𝑥2  +  𝑏𝑥 +  𝑐 =  (𝑥 +  𝑚)(𝑥 +  𝑛) 

where b, and c are constants, x is the independent variable we want to solve, and m, n, are also number 

constants. 

To factor a quadratic expression, we need to find two numbers that: 

• multiply to give us the constant term c, and i.e. 𝑚 × 𝑛 = 𝑐 

• add (or subtract) to give us the coefficient of the x-term b i.e. 𝑚 + 𝑛 = 𝑏 

Once we have these two numbers, we can use them to write the original qudaratic in the form  

(𝑥 +  𝑚)(𝑥 +  𝑛) 

Here is an example to illustrate the process: 

 

Factor and solve the quadratic expression: 𝑥2  +  5𝑥 +  6 = 0 

Step 1: Find two numbers that multiply to give us 6 and add up to give us 5. 

The two numbers are 2 and 3, because 2×3 = 6 and 2+3 = 5. 

Step 2: Use the two numbers to write the expression in factored form. 

𝑥2 +  5𝑥 +  6 =  (𝑥 + 2)(𝑥 + 3) = 0 

Note that the two linear factors have the form (x+a) and (x+b), where a and b are the two 

numbers we found in step 1. 

Step 3: Now we can see that either 𝑥 + 2 = 0 or 𝑥 + 3 = 0 for the above formula to work! 

That lets us now solve the original quadratic to say that 𝑥 = −2 or 𝑥 = −3  

 

In general, factoring a quadratic can be more difficult, especially when the coefficients are not integers 

or when the constant term c has many factors. When things get harder we could use something like the 

quadratic formula to help us. 

 

 

 

 

 

 
3 This should be revision, but don’t panic if you’re rusty on this, because you’ll always be able to use software to 

help you in this course (and most likely in real life, until you get to a point where it’s quicker just to know how to 

do it reliably yourself!) 



 

1015SCG Quantitative Reasoning               Week 5 Notes                      

Page 8 of 24 

 

 

Solve 𝑥2 + 7𝑥 + 12 = 0 using factorisation.  

[Hint: what two numbers add to 7, and multiply to 12?] 

 

 

 

 

 

 

 

 

 

Solve 𝑥2 + 7𝑥 + 12 = 0 using the quadratic formula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solve 𝑥2 = 6 + 𝑥 using either approach. [Hint: first, re-arrange so it looks like a quadratic] 
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A standard result to be aware of is called the difference of two squares - this is the result that 

𝑥2 – 𝑎2  =  (𝑥 − 𝑎)(𝑥 + 𝑎) 

which can give a quick and easy way to factorise the equation, and solution to an equation. 

 

One final thing to note: From the quadratic formula, we can see that the axis of symmetry 

𝑥 = −𝑏/2𝑎 sits half-way between the two zeros 

 

 

Introduction to exponential functions 

In this plot of the evolution of the whale population in Hervey Bay from the late 1980s to the early 

2000s, we can see that the population can be nicely approximately as linear until about 2000, but this 

this model breaks down beyond that point.  How else might we model the data? 

The straight-line model is a good model 

when the rate of increase – the number of 

whales the population grows by per year – is 

constant.  This is because the straight-line 

model has constant slope 𝑚 = ∆𝑦/∆𝑥 , 

where ∆𝑦 is the change in whales over the 

period of time ∆𝑥.  So 𝑚 in the linear model 

represents the constant rate of increase of the 

whale population. 

Here, we can do better than assume a 

constant rate of change.  Populations don’t 

usually change at a steady rate, in terms of 

change in the number of individuals per year.  

More usually, they change at a rate that is proportional to their size.  That is because the chances of a 

mother giving birth might remain the same, but if the population is twice as big, there will be twice as 

many mothers, and twice as many infants born.  Likewise, each individual faces the same risks to their 

life, so if the population is twice as big, twice as many individuals are likely to die. 

Changing at a rate proportional to your size is equivalent to doubling (or halving) your size at a fixed 

rate.  What type of function can be used to describe growth (or decay) of this kind?  Imagine a population 

that doubles every year, starting at 1000.  The population 𝑃(𝑥) after 𝑥 years would be given by4  

 

𝑃(0) = 1000 = 𝑃0   

𝑃(1) = 2000 =  2 × 1000 = 𝑃0 × 2  

𝑃(2) = 4000 =  4 × 1000 = 𝑃0 × 22  

𝑃(3) = 8000 =  8 × 1000 = 𝑃0 × 23  

𝑃(4) = 16000 =  16 × 1000 = 𝑃0 × 24  

 

So from this pattern we see that 𝑃(𝑥) = 𝑃0 × 2𝑥.   

 

 
4 we often represent the initial population using the same letter that we use to represent the population function, 

but with a ‘0’ subscript to indicate ‘initial value’.  Here the function is 𝑃(𝑥), so we use symbol 𝑃0 
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For the whale data, it looks more like the population doubles every 7 years.  In that case, 

𝑃(0) = 𝑃0   

𝑃(7) = 𝑃0 × 2 = 𝑃0 × 27/7  

𝑃(14) = 𝑃0 × 22 = 𝑃0 × 214/7  

So from this pattern we see that 𝑃(𝑥) = 𝑃0 × 2𝑥/7 = 𝑃0(21/7)
𝑥
.   

 

How might we describe the population of colonial Australia, over the period 

1788-1850, using an exponential model?  
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The exponential function 

Exponential functions are a family of functions of the form 𝑦 = 𝑏𝑥, where 𝑏 is called the base, and 𝑥 

is the exponent.  We only use positive numbers for the base 𝑏. 

 

Properties of the exponential functions 

 

 

 

There are two bases for the exponential functino that we tend to prefer in maths: 

• 𝑏 = 10 is convenient because of our base-10 number system (and use of scientific notation) 

• 𝑏 = 𝑒 ≈ 2.718… is a common choice in mathematics.  The number 𝑒 plays a special role in 

the mathematics of exponentials, especially regarding their rates of change (as we’ll see 

toward the end of the course).  We can derive the number e by considering how interest 

compounds over shorter and shorter calculation times. 

 

What is the return on investment if I invest at 𝑟 % per annum for a year, if the interest is 

calculated daily?  
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How can I convert an exponential in base 𝑏 to an exponential in base 10 or 𝑒?  If I can 

write 𝑏 = 10𝑘  or 𝑏 = 𝑒𝑟, then this is straightforward: 

 

 

 

 

 

 

 

But how can I find 𝑘, when 𝑏 = 10𝑘  (or 𝑟, when 𝑏 = 𝑒𝑟)?  Taking the exponential allows me to find 𝑏 

when I know 𝑘, but here I have the opposite problem -- I need to ‘undo’ the process of finding the 

exponential, and find 𝑘 when I know 𝑏. 

In mathematics, we call this finding the inverse of the exponential (function).  Finding the inverse of 

the exponential is so important that is has its own function name – it is called the logarithm.  

 

Logarithms 

• If 𝑦 = 𝑏𝑥, then 𝑥 =  log𝑏 𝑦. 

• If 𝑦 = 10𝑥, then 𝑥 =  log10 𝑦. 

• If 𝑦 = 𝑒𝑥, then 𝑥 =  log𝑒 𝑦 =  ln 𝑦. 

The logarithm with base e has its own name because of its fundamental importance in modern 

mathematics – it is called the natural logarithm, and has function name5 ln.   

It is commonly assumed (particularly in high-school maths curricula) that log by itself, without a given 

base, should be base 10, but that is by no means standard.  It probably arises because many calculators 

and computer programs use log to mean log10 , but you need to be check what base might be expected.  

In mathematics texts, log by itself could mean base 10, base 𝑒, or an arbitrary base. 

Now we can work out how to convert to base 10 or base 𝑒 from a different base: 

 

Convert 2𝑡 to base 10 

 

 

 

 

 

Convert 2𝑡/7 to base 𝑒 

 

 

 

 

 
5 From the French logarithme naturel 
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This approach relies on the fact that calculators typically have buttons to calculate the logarithms in 

base 10 and base 𝑒, but not other bases.  But what if I want to convert an exponential to a different base, 

such as base 2?  To do this, I need to be able to calculate logarithms for arbitrary bases – how can I 

calculate log𝑏 𝑥 for some number x, if my calculator can only find log10 𝑥 or ln 𝑥?  It turns out that6  

 

If 𝑦 = log𝑏 𝑥, then 𝑦 =
ln 𝑥

ln 𝑏
=

log10  𝑥

log10  𝑏
 

 

 

Properties of the logarithm functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6 To prove this: if 𝑦 = log𝑏  𝑥, then 𝑏𝑦 =  𝑥.  But, from the definition of the logarithm 𝑏 =  𝑒ln 𝑏.  Therefore 

𝑥 = 𝑏𝑦 =  (𝑒ln 𝑏)
𝑦

= 𝑒𝑦 ln 𝑏  

Taking the natural logarithm of both sides, we get 

ln 𝑥 = 𝑦 ln 𝑏, 𝑠𝑜 𝑦 =
ln 𝑥

ln 𝑏
 

We can repeat this, replacing e with 10 and ln with log10 
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We can quickly estimate log10 from scientific notation.  If the number is 𝑟 × 10𝑚 for          1 < 𝑟 < 10, 

it follows that 

log10(𝑟 × 10𝑚) = log10 𝑟 + log10 10𝑚 = 𝑚 + log10 𝑟 

and 0 < log10 𝑟 < 1, so we know that the log10 of the number sits between 𝑚 and 𝑚 + 1. 

 

Estimate the log base 10 of Avogadro’s number 6.022×10²³ 

 

 

 

 

 

 

 

 

 

Applications of exponentials and logarithms 

 

 

It often isn’t explained that the pH has a mathematical basis: the pH of a solution is the value of 

-log10[H
+], ie the negative log-base-10 of the molarity of hydrogen ions. 

So a quite acidic solution, say pH=1, means that  

−log10[H+] = 1, so log10[H+] = −1, so [H+] = 10−1 = 0.1 mol/litre 

 

What is the concentration of hydrogen ions in a swimming pool with pH=7.4?  
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In chemistry, there is also a quantity pOH, which is the negative log-base-10 of the molarity of hydroxyl 

(OH-) ions, -log10[OH-].   

It turns out that, at 25°C aqueous solutions satisfy [H+][OH-] = 10-14, which means that  

pH + pOH = −log10[H+] − log10(10−14/[H+]) 

                                             = −log10[H+] − log10[10−14] + log10[H+] = 14 

 

What is the acidity of an aqueous 1mmol solution of NaOH? 

 

 

 

 

 

 

 

 

 

 

If  P = 1000 e-0.1t,  

• is the population growing or shrinking? 

• after how long does it double or halve? 

• when would it reach a population of 100? 
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        Express the population of humpback whales in Hervey Bay, using an exponential with base e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Periodic functions 

In real life and science, we often deal with quantities that vary periodically.  On a global scale, we have 

a daily 24-hour cycle due to the earth’s rotation on its axis. But somethings undergo small daily changes, 
because they are influenced by other periodic processes – such as the phases of the moon, which have 

a period of around 29 days, or the time from sunrise to sunset, which varies over an annual time period 

due to the earth’s revolution around the sun. 

Describing quantities that vary periodically is a broad area of mathematics, and our modern approach 

begins with the functions sine and cosine.   

We usually first encounter these functions when we explore the properties of right-angled triangles: 

𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃) are defined in terms of the ratios of sides of the right-angled triangle that has one 

angle equal to 𝜃, as in the following picture. 
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There are four more functions in this family, called the sinusoids. They are each defined as ratios of 

sides of a right-angled triangle – the remaining four sinusoidal functions can also be defined in terms 

of 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃): 

 

𝑡𝑎𝑛(𝜃) =
𝑠𝑖𝑛(𝜃)

𝑐𝑜𝑠(𝜃)
, 𝑠𝑒𝑐(𝜃) =

1

𝑐𝑜𝑠(𝜃)
, 𝑐𝑜𝑠𝑒𝑐(𝜃) =

1

𝑠𝑖𝑛(𝜃)
, 𝑐𝑜𝑡𝑎𝑛(𝜃) =

1

𝑡𝑎𝑛(𝜃)
 

 

We will only really use 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃) here in this course. 

The approach above allows us to define these functions 

for angles between 0° and 90°. We extend these 

definitions to arbitrary angles by drawing a circle of 

radius 1 at the origin (0,0) of a set of axes (this special 

circle is called the unit circle).  We then overlap the 

above right-angled triangle onto that picture, putting the 

angle 𝜃 at the origin. The hypotenuse will end on the 

unit circle is we set its length to 1 – doing so also sets 

𝑠𝑖𝑛(𝜃) = Opposite, which is the y-coordinate of that 

point, and 𝑐𝑜𝑠(𝜃) = Adjacent, which is the x-coordinate 

of that point.   

If we rotate the point further around the circle, so that 

𝜃 > 90°, we can use the x- and y-coordinates of the point 

to extend our definition of 𝑐𝑜𝑠(𝜃) and 𝑠𝑖𝑛(𝜃), even 

though we can’t have a right-angled triangle with one 

angle larger than 90°.   

There are a few other relationships involving 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃) that are good to be aware of.   

Pythagoras’ theorem tells us that Adjacent2 + Opposite2 = Hypothenuse2, which gives us the relationship  

𝑠𝑖𝑛2(𝜃) + 𝑐𝑜𝑠2(𝜃) = 1 

Notice that the power of two is written between sin (or cos) and the angle – this is a slightly unusual 

notation, special to the sinusoidal functions.  We do this so we don’t get confused about whether we 

raising just the angle to a power – we are raising the whole thing to the power. 

For arbitrary (non-right-angled) triangles, there is an extension of Pythagoras’ theorem, known as the 

law of cosines, and there is also a law of sines that relates the size of angles of a triangle to the length 

of the opposite sites.  We won’t be using either of these laws in this course. These can be useful if you 

need to do more geometry problems in future! 
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Degrees vs Radians 

When you first learn about angles, you typically measure them in degrees.  This is the common 

everyday measure – longitude and latitude are measured in degrees; builders and manufacturers will 

give angle specification in degrees.  These are important everyday units to be able to understand and 

use.  The degree is defined by assigning 360° to a complete rotation – this number is traced back to the 

ancient Babylonians, who understood that there were close to 360 days in a year, but also that 360 is a 

useful number because so many numbers divide into it: dividing a circle into 2, 3, 4, 5, 6, 8, 9, 10, 12, 

15, 18 or 20 pieces gives whole-numbered angles for each piece (180°, 120°, 90°, 72°, 60°, 45°, 40°, 

36°, 30°, 24°, 20° and 18°, respectively). 

 

However, there is a second set of units for angles that mathematicians also use.  While 360° is a useful 

number of degrees in a full circle, it is entirely arbitrary!   

Instead, we may use the more fundamental 

approach.  Draw the sector of a circle with 

angle 𝜃, and define the size of the angle 𝜃, in 

radians, as the length of arc traced out by the 

sector, divided by the circle’s radius.  This 

ratio is independent of the size of the circle, or 

the units used to measure lengths.  Since a 

circle of radius 𝑟 has circumference 2𝜋𝑟, the 

angle of a full circle must be: 

𝜃 = 2𝜋𝑟/𝑟 = 2𝜋. 
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This gives us the conversion between degrees and radians: 

360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠  

We can use this to convert between units of angles, using our usual approach of introducing a conversion 

factor, and canceling out the units we want to get away from: 

 

 

 

What is 90 degrees, in radians? 

 

 

 

 

 

 

 

There are important mathematical reasons why we use radians, particularly related to the rates of change 

of 𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃) as the angle 𝜃 changes.  For this reason, it is important to be aware of radians, 

and how to change between radians and degrees. 

 

Plotting sin and cos 

 

The graph here shows the plots of 

𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃), as a function of the 

angle 𝜃. The solid line is 𝑠𝑖𝑛(𝜃) and the 

dashed line is 𝑐𝑜𝑠(𝜃). 

Notice that these functions have the 

same shape, but they are shifted relative 

to each other along the horizontal axis.   

This is known as a phase shift, because 

the only change corresponds to adding a 

constant amount to the angle (also 

called the phase).   

 

 

Also notice that these functions are periodic: they repeat every 2𝜋 ≈ 6.28, so that 𝑠𝑖𝑛(𝜃 + 2𝜋) =
𝑠𝑖𝑛(𝜃) and 𝑐𝑜𝑠(𝜃 + 2𝜋) = 𝑐𝑜𝑠(𝜃).  

This means if you know the value of 𝑠𝑖𝑛(𝜃) for the value of 𝜃 you have, if you add or subtract another 

360 degrees or 2pi radians to 𝜃, you will end up with the exact same value of 𝑠𝑖𝑛(𝜃 + 2𝜋). This is a 
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powerful result, and we can use it to describe so many natural phenomena, and even things in the 

business world for example. 

 

This is the sort of variation that we commonly see in seasonal variation, such as the maximum 

temperature in Brisbane from year to year 

 

 

However, if we defined 𝑡 as the day number in the year (𝑡 = 1 for Jan 1, 𝑡 = 365 for Dec 31), the 

maximum temperature is not just 𝑠𝑖𝑛(𝑡) or 𝑐𝑜𝑠(𝑡).  We need to change the scale in the x- and y-

directions, and shift the function in the x- and y-directions, so that the functions roughly overlap. 

How can we do this? 

 

Shifting and scaling functions 

For any function of the form 𝑦 = 𝑓(𝑥), we have a set of rules that allow us to rescale the function in 

the x- and y-directions, and to shift the function in the x- and y-directions: 

Shifting functions: For a function 𝑦 = 𝑓(𝑥), and positive constant 𝑐 > 0: 
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Scaling functions: For a function 𝑦 = 𝑓(𝑥), and positive constant 𝑐 > 0: 

 

Examples of shifting and scaling functions: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth noting that the changes needed to change the x-direction often seem counter-intuitive7, 

whereas the changes needed to change the y-direction often seem quite natural. 

 
7 the opposite of what you’d expect 
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Putting these all together gives us a general formula for matching a sinusoidal variation: 

𝑦 = 𝐴 sin[𝑏(𝑡 + 𝑐)] + 𝐷 

We can give specific meaning to some of these quantities: 

• 𝐴 is the amplitude of the sine wave: half the separation between the maximum and minimum 

values 

• 𝐷 is the mean of the sine wave: the average value of data (evenly spaced in time) 

• 𝑏 is the (angular) frequency of the function, telling us how many oscillations there are per 

unit time.  If the function we are modelling has period 𝑇, then 

𝑏 =
2𝜋

𝑇
 

• 𝑐 is the phase shift, measured in units of time.   

 

What values of A, b, c and D match the Brisbane temperature data? 
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Miscellaneous Functions (OPTIONAL) 

It’s impossible to give you all a comprehensive list of the functions you will need to know, because 

they depend so much on the applications of the mathematics you use.  We have focused on three 

important classes of function: polynomials (and quadratics in particular), exponentials/logarithms, and 

sinusoids.  To finish off, we look briefly at some other functions that you may encounter, so that you 

are aware of their existence and the context in which you might encounter them. 

𝑥 to negative or fractional powers.  The functions 𝑦 = 𝑥1/2 = √𝑥 and 𝑦 = 𝑥−1 = 1/𝑥 are plotted 

below. They look quite different to the graphs of polynomials. 

 

 

The square-root function 𝑦 = √𝑥 looks like the quadratic 𝑦 = 𝑥2 , except that the x and y axes have 

been switched.  This is no accident.  The square-root function is the inverse (the “opposite”) of the 

square function, because it undoes the process of squaring a number: if you square a number, and then 

take the square-root, you end up where you started.  The functions 𝑥1/2, 𝑥1/3, 𝑥1/4, etc. are useful to 

model data that initially grows very quickly, but whose growth slows down as time increases (as an 

alternative to the logarithm function). 

The function 𝑦 = 1/𝑥 has quite different behaviour to these examples.  It blows up (diverges to infinity) 

at a finite value of x, so it allows us to model functions that have a similar divergent behaviour.  By 

shifting along the x-axis, we can move the divergent x-value (the x-value where the function blows up).  

The power in the denominator controls how quickly the function diverges. 

 

Hyperbolic sinuisoids.  Despite their intimidating name, these functions are just combinations of the 

exponentials 𝑒𝑥 and 𝑒−𝑥.  We define 

cosh 𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
,   sinh 𝑥 =

𝑒𝑥 − 𝑒−𝑥

2
 

And we define the other hyperbolic functions in analogy with their ‘non-hyperbolic’ counterparts: 

tanh 𝑥 =
sinh 𝑥

cosh 𝑥
,  sech 𝑥 =

1

cosh 𝑥
,  csch 𝑥 =

1

sinh 𝑥
,    coth 𝑥 =

1

tanh 𝑥
 

The names of these functions are the same as the regular sinusoids, but with ‘h’ at the end.  However, 

they are pronounced a little oddly.  “Cosh” is pronounced as you’d expect, but “Sinh” is pronounced 
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“shine”, as if the ‘h’ were the second letter.  Similarly, “Tanh” is pronounced “than” (with a long ‘a’ 

like in “tan”, but starting with a “th”).   

 

They share some similarities with the sinusoids, but where we used the unit circle to define 𝑠𝑖𝑛(𝜃) and 

𝑐𝑜𝑠(𝜃), the hyperbolic sinusoids can be defined graphically taking a similar approach on a hyperbola: 

 

 

 

 

 

 

 

Since these functions are just fancy ways of combining exponentials, you might (quite reasonably) 

wonder why we both with them.  Mainly, it is because there are a lot of similarities and mathematical 

connections between the properties of the sinusoids and the hyperbolic sinusoids, so in some situations 

it is more convenient to work with these hyperbolic sinusoidal functions.  But in this course, we will 

mainly consider exponentials in the context of exponential growth or decay, in which case the 

hyperbolic sinusoids don’t help us very much. 

The bell-shaped curve. The Gaussian distribution plays a central role in statistics, so it is useful to be 

aware of its functional form.  The Gaussian distribution with mean 0 and standard deviation 1 is given 

by: 

𝑓(𝑥) = √
1

2𝜋
 𝑒−𝑥2/2 

The square-root out the front guarantees that the area under the function is 1.  We can use our shift and 

rescaling results to work out the distribution that has mean 𝜇 and standard deviation 𝜎. This involves 

shifting the mean from 𝑥 = 0 to 𝑥 = 𝜇, and rescaling in the x-direction by a factor 𝜎: 

 

√
1

2𝜋
 𝑒−𝑥2/2  ⟶  √

1

2𝜋
 𝑒−(

𝑥−𝜇
𝜎 )

2
/2 = √

1

2𝜋
 𝑒−(𝑥−𝜇)2/2𝜎2

 

 

However, in stretching the function, we increase its area, so we need to divide the whole thing by 𝜎, to 

keep the area under the graph equal to 1. 

 

So the general formula for a Gaussian of mean 𝜇 and standard deviation 𝜎 is 

𝑓(𝑥) = √
1

2𝜋

1

𝜎
𝑒−(𝑥−𝜇)2/2𝜎2

= √
1

2𝜋𝜎2 𝑒−(𝑥−𝜇)2/2𝜎2
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