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Introduction to Statistical inference

Contents
» Population, sample and random sampling.
» Point estimation of parameters

» Definitions
» Method of moments
» Maximum likelihood

» Fundamental sampling distributions
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Keywords

» Population: the complete set of numerical information on a
particular quantity in which an investigator is interested.
> We identify the concept of the population with that of the random
variable X.
»> The law or the distribution of the population is the distribution of
X, Fx.

» Sample: an observed subset (say, of size n) of the population values.

> Represented by a collection of n random variables Xi, Xz, ..., X,

typically ‘ iid (independent identically distributed) ‘

» Parameter: a constant characterizing X or Fx.
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keywords (ii)

> Statistical inference: the process of drawing conclusions about a
population on the basis of measurements or observations made on a
sample of individuals from the population.

» Statistic: a random variable obtained as a function of a random
sample, X1, X5,..., X,

» Estimator of a parameter: a random variable obtained as a function,
say T, of a random sample, X1, Xo,..., X}, used to estimate the
unknown population parameter.

» Estimate: a specific realization of that random variable, i.e., T
evaluated at the observed sample, xi, xo, ..., x,, that provides an
approximation to that unknown parameter.

4/21



Statistical inference: example

We want to know We have n copies We have n
nx = E[X] of X observed values of
X1, X2, o003 Xn
Xl,XQ,...,X,-,NF X1y X2y« 3 Xn

X ~F :> Sample i Observed sample

U 4 U

Estimator of px (r. v.) Estimate of p1x (number)
ux = E[X] — X = x

Expected value of X Sample mean Sample mean
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Point estimators: introduction

> A point estimator of a population parameter is a function, call it
T, of the sample information X, = (X1, ..., X;) that yields a single

number.

» Examples of population parameters, estimators and estimates:

Population Estimator: Estimate:

parameter T(X,) notation notation
Pop. mean px sample mean Ln"'x" X = px X
Pop. prop. px sample prop. Px Px

X2 _p(X)2
Pop. var. 0% sample var. M _ 5% 52
. i X2 —n(X

Pop. var. o'f( sample quasi var. % s)2< sf
In general, 6x Ox [




Point estimators: properties (i)

What are desirable characteristics of the estimators?

» Unbiasedness. This means that the bias of the estimator is zero.
What's bias? Bias equals the expected value of the estimator minus

the target parameter

Bias[fx] = E[0x] — 0x

Population Estimator Minimum Variance
parameter T(X,) Bias Unbiased? | Unbiased Estimator?
Pop. mean px | X E[X] —ux =0 Yes Yes, if X normal
Pop. prop. px bx E[px] — px =0 Yes Yes
Pop. var. 0% | 6% E[6%] — ox #0 No No
Pop. var. ox Sk E[sy] —ox =0 Yes Yes, if X normal
In general, Ox Ox E[6x] — 6x Often Rarely
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Point estimators: properties (i)

Sampling distribution Sampling distribution
of 6 of 6
Bias—>|
L o L 6
6 0 EQ0)
Parameter 6 is located at the Parameter 6 is not located at the
mean of the sampling distribution; mean of the sampling distribution;
E0)=6 E)+6
Panel A: Unbiased Estimator Panel B: Biased Estimator
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Point estimators: properties (ii)

> Efficiency. Measured by the estimator’s variance. Estimators with
smaller variance are more efficient. The standard error is defined as

se =0y =1/ Varld).

> Relative efficiency of two unbiased estimators é\x,l and HAXQ of a
parameter fOx is

Var[fx 1]

Relative efficiency(d ,HA = ~
y( X1 X72) Var[&x,g]

Note:

P> sometimes the inverse is used as a definition
> in any case, an estimator with smaller variance is more efficient
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Point estimators: properties (ii)

Sampling distribution
of 0,

Sampling diAstribution
of 6,

1
6
Parameter

>
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Point estimators: properties (iii)

» A more general criterion to select estimators (among unbiased and
biased ones) is the mean squared error defined as

MSE[Ax] = E[(Ax — 0x)?] = Var[dx] + (Bias[Ax])?

Note:
> the mean squared error of an unbiased estimator equals its variance
» an estimator with smaller MSE is better
» the minimum variance unbiased estimator has the smallest
variance/MSE among all estimators
» How do we come up with the definition of the estimator T7?
> In some situations, there exists an optimal estimator called minimum
variance unbiased estimator.
> |If that's not the case, there are various alternative methods that
yield reasonable estimators, for example:
> Maximum likelihood estimation
» Method of moments
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Methods of Point Estimation: Method of Moments

> Let X1, X5, ..., X, be a random sample from a probability density
function (continuous case) or probability mass function (discrete
case) f(X). The kth population moment (or distribution moment)
is E[XX], k=1,2,.... The corresponding kth sample moment is
(1/m> i X k=1,2,....

> Let X1, X5, ..., X, be a random sample from a probability density
function (continuous case) or probability mass function (discrete
case) with m unknown parameters 01,05, ..., 0. The moment
estimators ©1,©,, ..., 0,, are found by equating the first m
population moments to the first m sample moments and solving the
resulting equations for the unknown parameters.
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Methods of Point Estimation: Maximum Likelihood
Estimation

Given independent observations xi, xo, ..., X, from a probability density
function (continuous case) or probability mass function (discrete case)
f(x; 6), the maximum likelihood estimator © is that 6 which maximizes
the likelihood function:

L(0) = F(x1,0)f(x2,0) ... F(xn,0)

» Note that the variable of the likelihood function is 6.

» Quite often it is convenient to work with the natural log of the
likelihood function in finding the maximum of that function.

» The maximum likelihood estimator is unbiased asymptotically or in
the limit.

> The variance of © is nearly as small as the variance that could be
obtained with any other estimator.

» O has an approximate normal distribution.
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Sampling Distributions

> Since a statistic is a random variable that depends only on the
observed sample, it must have a probability distribution.

» The probability distribution of a statistic is called a sampling
distribution.

» The sampling distribution of a statistic depends on the distribution
of the population, the size of the samples, and the method of
choosing the samples.

14 /27



Sampling Distributions: Sample mean X

» The sample mean

Xi+Xo+ ...+ X,
n

y:

is a natural estimator of the population mean p. It is unbiased with
variance 02/n, where o is the standard deviation of X.

» In accordance with the CLT, for any distribution of X, whenever the
sample size n is sufficiently large

Xy

o/vn

N(0,1)

15 /27



Sampling Distributions: Sample mean X

> If the population has a normal distribution, the sampling
distribution of X is normally distributed.

> If the population does not have a normal distribution, using the
Central Limit Theorem we can approximate the sampling distribution
of X by a normal distribution as the sample size becomes large.
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Sampling Distributions: Sample proportion p

» We denote by p the population proportion of individuals with a
certain characteristic. The r.v. X that assumes value 1 on
individuals with the characteristic and 0 on the remaining individuals
follows a Be(p) and Bin(1, p) distributions.

27:1 Xi -X
n

ﬁ:

where
. o P
Epl=p V[p]=

if n > 30 and np(1 — p) > 5, we can apply the CLT. Some
statisticians use the condition np > 5 and n(1 — p) > 5.

(1-p)

p

_b-pr
Vp(1—=p)/n

~ N(0,1)
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Addendum: Chi-square distribution y?

» Given n independent standard Normal random variables
X1, Xa, . .., Xn, the random variable Y = X2 + X2 + - - - + X2 follows
a Chi-square distribution with n degrees of freedom:

Y ~x2

where
E[Y]=n V[Y]=2n
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Sampling Distributions: Sample variance 52

» The sample variance is an unbiased estimator of the population

variance (02):
w2
> (Xi — X)
n—1

» When the sample is taken from a normal population,

$% =

(n—1)S?
2 Xo-1

we then have
p

(n—1)

V(s =2
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Is the sample variance is an unbiased estimator of the
population variance (o)

> Let assume we have a random variable X with the following mean
and variance:

E[X] = u
Var[X] = o?=E[X?] -2
» Let assume we have sample Xi,..., X, ..., X, coming from
distribution X:
EX] = n
Var[X]] = o02=E [X,-z] — u?
» The sample mean is a random variable with the following mean and
variance:
EX] = u
var[X] = & —B[%] -2
ar = = 1
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Is the sample variance is an unbiased estimator of the
population variance (o)

Let assume we have a random variable X with the following mean
and variance:

L2 =X L[S ¢+ X —2xX)
n—1 a n—1
1 u n —
= E X? X° —2XXn| = ——FE X? — nX

- ﬁ(nE[X,?]*nE [xz})—nf(na +W7"( 2+M?>)

n—1

which proves that S? is an unbiased estimator of the population
variance.



Addendum: Student’'s t distribution

» Given a standard normal random variable X and Y independent of
X following a chi-square distribution (x?2) with n degrees of freedom,
the random variable —X— follows a distribution t with n degrees of

\Y/n

freedom:
X

e tn

vV Y/n -

E[Z]=0ifn>0 V[Z]=

where
if n>3

n—2
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Sampling Distributions: Sample mean X with unknown
variance

» When the sample is taken from a normal population with unknown
variance o2, we replace it by the sample variance S? to obtain:

x|

—
~ th-1
n

S/v/n
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Addendum: Fisher's F distribution

» Given two independent chi-squared random variables X; and X; such
that X; ~ x3 and X, ~ X2, the random variable 2;:; follows a F
distribution with n; and n, degrees of freedom:

Xl/nl
Z: ~J n n
Xz/nz 1,2

> Property: if Z ~ F, ,, then Zt~ Frym
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Sampling Distributions: Variance ratio.

» When two independent samples (sample from X; and sample from
Xz) of respective sizes n; and ny are taken from two normal
populations, the ratio of their sample variances follows an F
distribution with n; —1 and ny — 1 degrees of freedom

2 /2

5)<1/f7x1 F, .

P > ~ Fp—1,m—-1
SXZ/UXQ
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Appendix: Bootstraping

There are situations in which the sampling distribution of an estimator 0
(statistic) is unknown or difficult to derive.

>

>

Bootstrap — Computer-intensive technique to obtain simulated
values of the population by only using values from the sample.

Suppose that we are sampling from a population that can be
modeled by the probability distribution f(x,#). The random sample
results in data values xq, x», ..., xy and we obtain 0 as the point
estimate of #. We would now use a computer to obtain bootstrap
samples of size n < N from the original sample, and for each of
these subsamples we calculate the bootstrap estimate 6% of 6. This
results in:

Bootstrap Sample | Observations | Bootstrap Estimate
1 X{ X5, X 01
2 X{ X5, Xy 05
B X{ X5, Xy 0%

26 /27



Appendix: Bootstraping

» Usually B = 100 or 200 of these bootstrap samples are taken.

» We can then consider

w|

1 B
0 =230
i=1

to approximate the sample mean of the bootstrap estimator 6.

» Similarly, the standard error of 0 can be approximated as:

» The empirical distribution of 6+ approximates its true distribution.
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