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Introduction to Statistical inference

Contents
I Population, sample and random sampling.

I Point estimation of parameters
I Definitions
I Method of moments
I Maximum likelihood

I Fundamental sampling distributions
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Keywords

I Population: the complete set of numerical information on a
particular quantity in which an investigator is interested.
I We identify the concept of the population with that of the random

variable X .
I The law or the distribution of the population is the distribution of

X , FX .

I Sample: an observed subset (say, of size n) of the population values.

I Represented by a collection of n random variables X1,X2, . . . ,Xn,

typically iid (independent identically distributed) .

I Parameter: a constant characterizing X or FX .

3 / 27



keywords (ii)

I Statistical inference: the process of drawing conclusions about a
population on the basis of measurements or observations made on a
sample of individuals from the population.

I Statistic: a random variable obtained as a function of a random
sample, X1,X2, . . . ,Xn

I Estimator of a parameter: a random variable obtained as a function,
say T , of a random sample, X1,X2, . . . ,Xn, used to estimate the
unknown population parameter.

I Estimate: a specific realization of that random variable, i.e., T
evaluated at the observed sample, x1, x2, . . . , xn, that provides an
approximation to that unknown parameter.
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Statistical inference: example

We want to know We have n copies We have n
µX = E[X ] of X observed values of

X1,X2, . . . ,Xn

X1,X2, . . . ,Xn ∼ F x1, x2, . . . , xn
X ∼ F ⇒ Sample ⇒ Observed sample

⇓ ⇓ ⇓
Estimator of µX (r. v.) Estimate of µX (number)

µX = E[X ] ⇐ X̄ ⇐ x̄
Expected value of X Sample mean Sample mean
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Point estimators: introduction

I A point estimator of a population parameter is a function, call it
T , of the sample information X n = (X1, . . . ,Xn) that yields a single
number.

I Examples of population parameters, estimators and estimates:

Population Estimator: Estimate:
parameter T (X n) notation notation

Pop. mean µX sample mean
X1+...+Xn

n X̄ = µ̂X x̄
Pop. prop. pX sample prop. p̂X p̂x

Pop. var. σ2
X sample var.

∑
i X

2
i −n(X̄ )2

n σ̂2
X σ̂2

x

Pop. var. σ2
X sample quasi var.

∑
i X

2
i −n(X̄ )2

n−1 s2
X s2

x

. . . . . . . . . . . .

In general, θX . . . θ̂X θ̂x
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Point estimators: properties (i)

What are desirable characteristics of the estimators?

I Unbiasedness. This means that the bias of the estimator is zero.
What’s bias? Bias equals the expected value of the estimator minus
the target parameter

Bias[θ̂X ] = E[θ̂X ]− θX

Population Estimator Minimum Variance
parameter T (X n) Bias Unbiased? Unbiased Estimator?

Pop. mean µX X E[X̄ ]− µX = 0 Yes Yes, if X normal
Pop. prop. pX p̂X E[p̂X ]− pX = 0 Yes Yes

Pop. var. σ2
X σ̂2

X E[σ̂2
X ]− σ2

X 6= 0 No No

Pop. var. σ2
X s2

X E[s2
X ]− σ2

X = 0 Yes Yes, if X normal

In general, θX θ̂X E[θ̂X ]− θX Often Rarely
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Point estimators: properties (i)
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Point estimators: properties (ii)

I Efficiency. Measured by the estimator’s variance. Estimators with
smaller variance are more efficient. The standard error is defined as

se ≡ σθ̂ =
√
Var [θ̂].

I Relative efficiency of two unbiased estimators θ̂X ,1 and θ̂X ,2 of a
parameter θX is

Relative efficiency(θ̂X ,1, θ̂X ,2) =
Var[θ̂X ,1]

Var[θ̂X ,2]

Note:
I sometimes the inverse is used as a definition
I in any case, an estimator with smaller variance is more efficient
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Point estimators: properties (ii)
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Point estimators: properties (iii)

I A more general criterion to select estimators (among unbiased and
biased ones) is the mean squared error defined as

MSE[θ̂X ] = E[(θ̂X − θX )2] = Var[θ̂X ] + (Bias[θ̂X ])2

Note:
I the mean squared error of an unbiased estimator equals its variance
I an estimator with smaller MSE is better
I the minimum variance unbiased estimator has the smallest

variance/MSE among all estimators

I How do we come up with the definition of the estimator T?
I In some situations, there exists an optimal estimator called minimum

variance unbiased estimator.
I If that’s not the case, there are various alternative methods that

yield reasonable estimators, for example:
I Maximum likelihood estimation
I Method of moments
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Methods of Point Estimation: Method of Moments

I Let X1,X2, ...,Xn be a random sample from a probability density
function (continuous case) or probability mass function (discrete
case) f (X ). The kth population moment (or distribution moment)
is E [X k ], k = 1, 2, . . . . The corresponding kth sample moment is
(1/n)

∑n
i=1 X

k
i , k = 1, 2, . . . .

I Let X1,X2, ...,Xn be a random sample from a probability density
function (continuous case) or probability mass function (discrete
case) with m unknown parameters θ1, θ2, . . . , θm. The moment
estimators Θ̂1, Θ̂2, . . . , Θ̂m are found by equating the first m
population moments to the first m sample moments and solving the
resulting equations for the unknown parameters.
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Methods of Point Estimation: Maximum Likelihood
Estimation

Given independent observations x1, x2, ..., xn from a probability density
function (continuous case) or probability mass function (discrete case)
f (x ; θ), the maximum likelihood estimator Θ̂ is that θ which maximizes
the likelihood function:

L(θ) = f (x1, θ)f (x2, θ) . . . f (xn, θ)

I Note that the variable of the likelihood function is θ.

I Quite often it is convenient to work with the natural log of the
likelihood function in finding the maximum of that function.

I The maximum likelihood estimator is unbiased asymptotically or in
the limit.

I The variance of Θ̂ is nearly as small as the variance that could be
obtained with any other estimator.

I Θ̂ has an approximate normal distribution.
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Sampling Distributions

I Since a statistic is a random variable that depends only on the
observed sample, it must have a probability distribution.

I The probability distribution of a statistic is called a sampling
distribution.

I The sampling distribution of a statistic depends on the distribution
of the population, the size of the samples, and the method of
choosing the samples.
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Sampling Distributions: Sample mean X

I The sample mean

X =
X1 + X2 + ...+ Xn

n

is a natural estimator of the population mean µ. It is unbiased with
variance σ2/n, where σ is the standard deviation of X .

I In accordance with the CLT, for any distribution of X , whenever the
sample size n is sufficiently large

X − µ
σ/
√
n
≈ N(0, 1)
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Sampling Distributions: Sample mean X

I If the population has a normal distribution, the sampling
distribution of x̄ is normally distributed.

I If the population does not have a normal distribution, using the
Central Limit Theorem we can approximate the sampling distribution
of x̄ by a normal distribution as the sample size becomes large.
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Sampling Distributions: Sample proportion p̂

I We denote by p the population proportion of individuals with a
certain characteristic. The r.v. X that assumes value 1 on
individuals with the characteristic and 0 on the remaining individuals
follows a Be(p) and Bin(1, p) distributions.

p̂ =

∑n
i=1 Xi

n
= X

where

E [p̂] = p V [p̂] =
p(1− p)

n

if n ≥ 30 and np(1− p) > 5, we can apply the CLT. Some
statisticians use the condition np > 5 and n(1− p) > 5.

p̂ − p√
p(1− p)/n

≈ N(0, 1)
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Addendum: Chi-square distribution χ2

I Given n independent standard Normal random variables
X1,X2, . . . ,Xn, the random variable Y = X 2

1 + X 2
2 + · · ·+ X 2

n follows
a Chi-square distribution with n degrees of freedom:

Y ∼ χ2
n

where
E [Y ] = n V [Y ] = 2n
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Sampling Distributions: Sample variance S2

I The sample variance is an unbiased estimator of the population
variance (σ2):

S2 =

∑n
i=1

(
Xi − X

)2

n − 1

I When the sample is taken from a normal population,

(n − 1)S2

σ2
∼ χ2

n−1

we then have

V [S2] = 2
σ4

(n − 1)
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Is the sample variance is an unbiased estimator of the
population variance (σ2)

I Let assume we have a random variable X with the following mean
and variance:

E [X ] = µ
Var [X ] = σ2 = E

[
X 2
]
− µ2

I Let assume we have sample X1, . . . ,Xi , . . . ,Xn coming from
distribution X :

E [Xi ] = µ
Var [Xi ] = σ2 = E

[
X 2
i

]
− µ2

I The sample mean is a random variable with the following mean and
variance:

E
[
X
]

= µ

Var
[
X
]

=
σ2

n
= E

[
X

2
]
− µ2
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Is the sample variance is an unbiased estimator of the
population variance (σ2)

I Let assume we have a random variable X with the following mean
and variance:

E
[
S2
]

= E

[∑n
i=1(Xi − X )2

n − 1

]
= E

[∑n
i=1(X 2

i + X
2 − 2XiX )

n − 1

]

=
1

n − 1
E

[
n∑

i=1

X 2
i + nX

2 − 2XXn

]
=

1

n − 1
E

[
n∑

i=1

X 2
i − nX

2

]
=

1

n − 1

(
nE
[
X 2
i

]
− nE

[
X

2
])

=
1

n − 1

(
nσ2 + nµ2

////− n

(
σ2

n
+ µ2

//

))
=

nσ2 − σ2

n − 1
= σ2,

which proves that S2 is an unbiased estimator of the population
variance.
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Addendum: Student’s t distribution

I Given a standard normal random variable X and Y independent of
X following a chi-square distribution (χ2

n) with n degrees of freedom,
the random variable X√

Y/n
follows a distribution t with n degrees of

freedom:

Z =
X√
Y /n

∼ tn

where
E [Z ] = 0 if n ≥ 0 V [Z ] =

n

n − 2
if n ≥ 3
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Sampling Distributions: Sample mean X with unknown
variance

I When the sample is taken from a normal population with unknown
variance σ2, we replace it by the sample variance S2 to obtain:

X − µ
S/
√
n
≈ tn−1
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Addendum: Fisher’s F distribution

I Given two independent chi-squared random variables X1 and X2 such

that X1 ∼ χ2
n1

and X2 ∼ χ2
n2

, the random variable X1/n1

X2/n2
follows a F

distribution with n1 and n2 degrees of freedom:

Z =
X1/n1

X2/n2
∼ Fn1,n2

I Property: if Z ∼ Fn1,n2 then Z−1 ∼ Fn2,n1
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Sampling Distributions: Variance ratio.

I When two independent samples (sample from X1 and sample from
X2) of respective sizes n1 and n2 are taken from two normal
populations, the ratio of their sample variances follows an F
distribution with n1 − 1 and n2 − 1 degrees of freedom

S2
X1
/σ2

X1

S2
X2
/σ2

X2

∼ Fn1−1,n2−1
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Appendix: Bootstraping

There are situations in which the sampling distribution of an estimator θ̂
(statistic) is unknown or difficult to derive.

I Bootstrap → Computer-intensive technique to obtain simulated
values of the population by only using values from the sample.

I Suppose that we are sampling from a population that can be
modeled by the probability distribution f (x , θ). The random sample
results in data values x1, x2, . . . , xN and we obtain θ̂ as the point
estimate of θ. We would now use a computer to obtain bootstrap
samples of size n < N from the original sample, and for each of
these subsamples we calculate the bootstrap estimate θ̂∗ of θ. This
results in:

Bootstrap Sample Observations Bootstrap Estimate

1 x∗1 , x
∗
2 , . . . , x

∗
n θ̂∗1

2 x∗1 , x
∗
2 , . . . , x

∗
n θ̂∗2

...
...

...

B x∗1 , x
∗
2 , . . . , x

∗
n θ̂∗B

26 / 27



Appendix: Bootstraping

I Usually B = 100 or 200 of these bootstrap samples are taken.

I We can then consider

θ
∗

=
1

B

B∑
i=1

θ̂∗i

to approximate the sample mean of the bootstrap estimator θ̂∗.

I Similarly, the standard error of θ̂ can be approximated as:

seθ̂ =

√√√√∑B
i=1

(
θ̂∗i − θ

∗)2

B − 1

I The empirical distribution of θ̂∗ approximates its true distribution.

27 / 27


